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Figure 1. The four styles of TA-Block. The (b) is actually the
model we used in the main text.

.

1. TAM in the different position.
We here introduce the four different exemplars of TANet.

TANet-a, TANet-b, TANet-c, and TANet-d denote the TAM
is inserted before the first convolution, after the first convo-
lution, after the second convolution, and after the last con-
volution in the block, respectively. These four styles are
graphically presented in Fig. 1 which were mentioned in
main text.

2. Visualizations of Learned Kernel
In the supplementary material, we are ready to add more

visualizations of distribution for importance map V in local
branch and video adaptive kernel Θ in global branch. The
3×1×1 convolution kernels in I3D3×1×1 are also visual-
ized to study their intentions in inference. To probe into the
effects on learning kernels in the different stages, the visual-
ized kernels are chosen in stage4 6b and stage5 3b, respec-
tively. Some videos are randomly selected from Kinetics-
400 and Sth-Sth V2 to show the diversities in different video
datasets.

Firstly, as depicted in Fig. 2 and Fig. 3, We can ob-
serve that the distributions of importance map V in local
branch are smoother than the kernel Θ in global branch,
and local branch pays different attention to each video when
modeling the temporal relations. Then, the kernel Θ in
global branch performs the adaptive aggregation to learn

the temporal diversities in videos. The visualized kernels
in I3D3×1×1 can make a direct comparison with the kernel
Θ, and we find that the distributions of kernel in I3D3×1×1

are extremely narrow whether on Kinetics-400 or on Sth-
Sth V2. Finally, our learned kernels visualized in figures
have exhibited the clear differences between two datasets
(Kinetics-400 vs. Sth-Sth V2). This fact is in line with our
prior knowledge that there is an obvious domain shift be-
tween two datasets. The Kinetics-400 mainly focuses on
appearance and Sth-Sth V2 is a motion dominated dataset.
However, this point can not be easily summarized from the
kernels in I3D3×1×1, because the overall distributions of
kernels in I3D3×1×1 on two datasets show minor differ-
ences.

Generally, the diversities in our learned kernels have
demonstrated that the diversities are indeed existing in
videos, and it is reasonable to learn spatio-temporal repre-
sentation in an adaptive scheme. These findings are again
in line with our motivation claimed in the paper.
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Figure 2. The distribution of learned kernel V and Θ in the stage4 6b.
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Figure 3. The distribution of learned kernel V and Θ in the stage5 3b.


