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A. Aspect Ratio Solver
The epipolar constraint u>Fx = 0 is invariant to a pro-

jective change of coordinates. This implies that the aspect
ratio cannot be recovered using only the constraints avail-
able from the radial fundamental matrix (e.g., see (13)). Ad-
ditional constraints can be obtained by enforcing the con-
currence of back-projected corners with their correspond-
ing scene points using (1). The constraints given by (1)
generate polynomial equations of the unknown aspect ratio,
remaining unknowns of H, and the unknown division model
parameters {a, h31, h32, h33, λ1, ..., λn}. The formulation
introduces N + 1 unknowns, but the formulation is invari-
ant to the scale of H. The minimal solution requiresN/2+2
image-to-target correspondences.

Let u′ be the projection center-subtracted image point
u′ = T(−e)u. Then we can rewrite (1) as following

 u′/f
v′/f

ψ(r(diag(a−1, 1, 1)u′))

×diag(a, 1, 1)H︸ ︷︷ ︸
Ĥ

x = 0. (21)

Solving (10) and (11) gives the radial fundamental ma-
trix F and projection center e, respectively. We use the rela-
tion F ∼ [e]×

(
ah>1 x, h

>
2 x, 0

)>
to determine the first two

rows of the matrix Ĥ, up to scale, ĥ>1 =
(
f21, f22, f23

)
and

ĥ>2 = −
(
f11, f12, f13

)
.

Rewriting (21) in terms of the unknowns gives
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where r0(a) =
√

(u
′

a )2 + (v′)
2, x′ = ĥ>1 x, y′ = ĥ>2 x.

After reparameterizing with b = a2, it can be seen that for
N = 1, (22) is linear in the unknowns and for N = 2, a
polynomial system of degree three must be solved.

We tested the solvers for the cases N = 1 and N = 2
on synthetic data and found that they are sensitive to noise.
With a sufficiently good guess on aspect ratio, the solver
in (17) performs better than the aspect ratio solver (see
Fig. C.1). We opted to sample over aspect ratio rather than
introduce these solvers. We leave the incorporation of min-
imal solvers for unknown aspect ratio for future work.

B. Recovering Radial-Projection Functions for
User-Selected Camera Models

The detected corners u can be back-projected to rays
γg(u) = γ

(
u, v, ψ(r(u))

)>
, γ > 0 in the direction of the

board fiducials in the camera’s coordinate system. The po-
lar angle of the ray determines how the points of the ray are
projected, so any point of the ray can be used (equivalently,
any γ > 0 in (1) can be used). The distances to the op-
tical axis R and principal plane Z are computed from the
unit vector concurrent with the ray, g(u)

‖g(u)‖ . With the radii
and depths recovered, linear least squares can be used to re-
cover the unknowns of the radial projection functions listed
in Tables 1, with the exception of the Double Sphere (DS)
model. This demonstrates the ease with which BabelCalib
is extended.

Division Model to Kannala-Brandt Regression The ex-
periments of Sec. 5 confirm that the Kannala-Brandt (KB)
model is the most flexible and accurate over the largest
range of lenses, which is consistent with the results of [41].
We also found that the Kannala-Brandt model is also effec-
tive for catadioptric rigs (see Table 5).

The number of failed calibrations of OpenCV and Kalibr
reported in Table 5 suggests that Kannala-Brandt is one of
the hardest camera models to initialize. Directly computing
a model proposal for Kannala-Brandt is difficult. The dis-
placement of the projection from the optical center is pro-
portional to a polynomial function of atan2. The trigono-
metric function atan2 is not easily eliminated since the un-
known depth Z is unique to each fiducial on the chessboard.
Thus the problem cannot be solved as a polynomial system.
BabelCalib initializes Kannala-Brandt by linearly regress-
ing its parameters against the estimated division model,
which is formulated in Sec. 3. We derive the linear sys-
tem here to show how easy the model-to-model regression
is once the back-projection function is known.

We back-project the corners ui =
(
ui, vi, 1

)>
to ray

directions x′i =
(
x′i, y

′
i, z
′
i

)>
where x′i = g(K−1ui).

The radii and depths are computed as Ri =
√
x′2i + y′2i

and Zi = z′i, respectively. The polar angles ωi =
atan2 (Ri, Zi) are determined, and the unknown coeffi-
cients of the polynomial ri = ωi +

∑4
n=1 knω
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i can

be determined linearly,
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Solving (23) fully specifies the Kannala-Brandt projec-
tion model since the center of projection e and the focal
length f are known from estimation of the back-projection
model — from (11) and (17), respectively.

C. Algorithm
To summarize the proposed RANSAC-based calibration

framework detailed in Sec. 4, we provide Algorithm 1 with
all the crucial steps of the BabelCalib framework. The de-
tails on the pose optimization are omitted in the algorithm.

Algorithm 1: BabelCalib Camera Calibration
Input: 2D-3D point correspondences uijk ↔ Xij

Parameters: Radial projection model φθ
Output: Θ* = {θ*, K*, R*

jk, t
*
jk}

J *
0 ←∞, J * ←∞

repeat
Sample image k′ and plane j′

Sample {uij′k′ ↔ Xij′}Ni=1

Compute e and F from {uij′k′ ↔ Xij′}Ni=1 with (15)
Correct corners uij′k′ to u∗ij′k′ with (14)
Compute {Rj′k′ , tx, ty} from F with (13)
Sample aspect ratio a from [0.5, 2]
Compute {f, λ1, ..., λN , tz} with (17)
K← T(e) diag(af, f, 1), tj′k′ ←

(
tx, ty, tz

)>
if φ−1

θ is not the division model then
Regress θ of φθ with (18)

end
for (k, j) 6= (k′, j′) do

Sample image k and plane j
Back-project the corners x′ijk ← g(K−1uijk)
Compute {Rjk, tjk} from {x′ijk}i with [29]

end
Θ0 ← {θ, K, Rjk, tjk}
Compute loss J0 ← J (Θ0) with (19)
if J0 < J ∗0 then
J ∗0 ← J0, I∗0 ← I0

Optimize ΘLO ← argminΘ J (Θ) with (19)
Compute loss JLO ← J (ΘLO) with (19)
if JLO < J ∗ then
J ∗ ← JLO, Θ∗ ← ΘLO

end
end

until T iterations;
Compute inlier ratio I∗ ← I(Θ∗) with (20)

Figure C.1: Noise sensitivity. RMS reprojection error on
synthetic images with added 1 px noise for (left) the solvers
for the division model complexity N = 1, and (right) the
solvers for the complexity N = 2. Red curves correspond
to the linear solvers from (17) that do not solve for the as-
pect ratio, and green curves correspond to the aspect ratio
solvers from (22). Solid curves are the median errors and
the shaded plots are the corresponding interquartile ranges.

D. Calibration with Limited Data
Calibration accuracy is dependent on good feature cover-

age. However, fast calibration from few images is also im-
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Figure C.2: Kalibr, OCamCalib and UZH data and cali-
bration results. (rows 1,3,5) example images with detected
(red crosses) and reprojected (cyan circles) corners; (rows
2,4,6) all corners from the camera subset color-coded cor-
responding to their reprojection errors.
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Figure C.3: Calibration results for limited train data. Cross-validation with corresponding train size is performed, and
the reported errors are normalized in accordance with image resolution 1000 × 1000 px. E denotes the RMS weighted
reprojection error. OCamCalib-DIV requires at least two images for calibration.

portant for users e.g. for lens inventory purposes. We com-
pared the performance of calibration methods on a limited
amount of training data starting from a single image. We
randomly drew the subsamples of sizes 1, 2, and 5 images
from the training data (10 times for each train size) and eval-
uated the calibrations on the hold-out test data. The Fig. C.3
reports the distributions of the robust test errors (19). To
remove the effect of the image resolution for different cam-
eras, the errors are normalized in accordance with the reso-
lution 1000× 1000 px. There are several limitations found
in current frameworks. OCamCalib-DIV requires at least
two images for calibration so they don’t have the results for
the train size 1. Also, as was mentioned in previous sec-
tion, this toolbox requires all points to be visible from all
views which is a big limitation. All other methods would
occasionally fail for particular subsets of images. For such
failure cases we set the test error to be the maximum error.
The proposed calibration method never fails and provides
the best calibration starting from a single image already.


