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Abstract

This document provides the supplementary material for
the main publication. Section 1 provides additional infor-
mation about the 50 objects dataset used to train CNN-
PS [1]. Section 2 provides an in depth explanation of the
pixelwise data generation with all the relevant hyperparam-
eters. Section 3 contains additional visualisations of the
qualitative results on the DiLiGenT dataset.

1. CNN-PS Training on an Extended Dataset

This section provides additional information about the
experiment during which CNN-PS [1] was trained on an
extended dataset of globally rendered objects. This exper-
iment is described in Section 5 and Figure 7 of the main
publication. The dataset contains 50 objects in total, 15 of
which are the original objects of the training portion of the
Cycles-PS [1] dataset. These 15 objects are then supple-
mented with another 35 objects from Thingi10K [3] dataset.
CNN-PS is trained under four different setups, using 20, 30,
40 and 50 objects respectively. Figure 1 shows the images
of the objects used for corresponding experiments. For each
object, original rendering protocol of Cycles-PS [1] is em-
ployed to render 3000 images using Blender. 3 material cat-
egories (diffuse, specular dieletric and metallic) and 1000
random directional lights (uniform in the upper hemisphere
up to 70o elevation angle) per material category are sam-
pled. The material hyper-parameter ranges are chosen to be
slightly more general than the ones used in [1]. They are
provided in Figure 2. All images are rendered at 256x256
resolution with each 8x8 pixel patch having a different ma-
terial (i.e. 32x32 material maps).

Training is performed using the original CNN-PS net-
work architecture and training script of [1] (using the same
masking of lights per map and rotation augmentation proce-
dure) with one change - the Euclidean distance loss function
is replaced with the angular error loss (see main submission,
Section 4) to be fully comparable with our PX-CNN-PS. We
also performed an additional set of experiments (with 20,
30, 40, 50 objects), that also included generating additive
and multiplicative noise as well as additive ambient light on
top of obtained global renderings. These effects were im-
plemented at train time as data augmentation (so as to get

Additional objects for the 20 objects experiment
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Additional objects for the 40 objects experiment

Additional objects for the 50 objects experiment

Figure 1. Objects used to extend the training portion of the origi-
nal Cycles-PS [1] dataset.

a different random sampling at each epoch) with values ex-
plained in Table 2.

2. Pixelwise Data Generation
This section provides a more in depth explanation of the

pixelwise data generating procedure. The objective is to
approximate certain global illumination effects as well as
other real world imperfections so as the generated obser-
vation maps to be realistic enough to be applicable in real
world test data. It is important to note that we do not attempt
to exactly replicate the distribution of many real world ef-
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Category Roughness Specular Metallic Subsurface Other
Diffuse 0.75− 1 0− 0.25 0 0 0− 1

Specular 0− 0.25 0.75− 1 0− 1 0 0− 1
Metallic 0− 1 0 0.75− 1 0 0− 1

Figure 2. Top: Material categories considered for the extension
of the CNN-PS [1] training set. Parameters are uniformly sam-
pled in the respective ranges. Other refers to all over parame-
ters of the Disney BRDF namely BaseColor, SpecularTint, Sheen,
SheeTint, Clearcoat, ClearcoatRoughness, IOR. Bottom: sample
images from these categories i.e. Diffuse (left), specular dielectric
(middle) and metallic (right).

fects, but instead avoid significantly underestimating them.
Thus most of the approximations are aimed to be the rea-
sonable upper bound of an effect and in practice they are
likely to be much less (e.g. the sampled ambient effect is up
to 0.01, but for most real pixels it is likely to be a lot less).
This is a valid procedure as long as the network has enough
learning capacity.

As a general principle, we aim to sample most param-
eters uniformly in the appropriate range, in order to avoid
data bias. To simplify the notation, we assume that the pixel
value i is a real number i ∈ [0, 1] with 0 being completely
black and 1 being the saturation level (although the division
with the light source brightness can lead to observation map
values higher than 1). We also denote a uniform real distri-
bution in the interval [a, b] as UR(a, b), a uniform integer
one in the interval [k, l] as UI(k, l) and a normal distribu-
tion with mean µ and standard deviation σ as N (µ, σ).

Normals: We sample normals uniformly in the upper
hemisphere so as to maximise the generality of the train-
ing data. Note that for some very oblique normals, after all
the effects are applied, all of the map pixels may be ending
up very small. To avoid numerical instabilities, any map
where the maximum RGB pixel value is less than 1e-3 (i.e.
0.1% of the saturation level) is discarded and not included
in the training data.

Lights: We trained 2 different networks, aimed to tackle
the dense and sparse light settings. For the dense lights set-
tings, we matched the distribution of [1] which was 50-1000
random lights (up to 70o elevation angle). The sparse light
setup was made to match that of [2] namely exactly 10 ran-
dom lights with elevation angle of up to 45o. For both dense
and sparse light settings, light source brightness φ is sam-
pled uniformly and independently (for all lights and chan-
nels) in the DiLiGenT range, i.e. φ = UR(0.28, 3.2).

Materials: The material determines the surface albedo
(which is essentially the intrinsic color) as well as other
BRDF parameters. We sample albedo ρ color components
uniformly so ρred = UR(0, 1) and similarly for green and
blue channels. In order for our data to be applicable in a
range of real world situations, 75% of the data are gener-
ated using a random material from the Disney BRDF. All
8 parameters (excluding subsurface,IOR), namely metal-
lic, specular, roughness, specularTint, sheen, sheenTint,
clearcoat and clearcoatRoughness are sampled uniformly
(UR(0, 1)) and independently. The Dinsey non-linear equa-
tion uses both the albedo and BRDF parameters as inputs so
the direct reflectance rd component computation is straight-
forward. The remaining 25% of the training data are gen-
erated using data from the MERL material database. Un-
fortunately, this database only contains 100 materials with
specific albedo (e.g. “blue-acrylic”, “green-latex”) which
is a very limited set for tackling general PS problems. To
overcome this limitation, we generate virtual materials su-
perset of the MERL database with the following procedure:
firstly a random MERL material M ∼ UI(1, 100) is se-
lected. Then a random weight w ∼ UR(0, 1) is sampled.
Finally, the material’s BRDF BM is mixed with a Lamber-
tian component N · L to get overall reflectance:

rb(N,L,V0, ρ,M) = ρ
(
wBM (N,L,V0)+(1−w)N·L

)
(1)

where in Equation 1, L,V0 are the light and view direction
respectively (as explained in the main text).

We note that the above material sampling procedure is
aimed to target general test data. Of course, in the case of a
very specific application (e.g industrial inspection), a more
constrained set of materials would be more appropriate.

Cast shadows: Cast shadows are observed in real data
when a part of the surface is blocking the light, thus turn-
ing the direct reflectance to zero. Our aim is to compute a
shadow map approximation, (i.e. compute all of the direc-
tions were direct refletance is blocked) regardless of which
light sources are actually available. We note that that realis-
tic shadows are likely to be piece-wise continuous in scenes
with a few discrete objects. In addition, the likelihood of a
particular directing to be in shadow increases as its eleva-
tion angle increases, and in principle, the central direction
V0 = [0, 0, 1] is never blocked by shadow. Finally, if a di-
rection is blocked by shadow, it is very likely that all other
directions with the same azimuth and more oblique eleva-
tion angles to also be blocked by shadow.

Taking all of the above considerations into account, the
assumed shadow model consists of a circular “wall” (see
Figure3) surrounding the observation map. More specif-
ically, we sample 20 height values (corresponding to az-



Figure 3. Demonstration of the assumed shadow model consisting
of a circular “wall” surrounding the observation map. All shaded
direction are marked red whereas non shaded ones are marked
green.

Effects Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Mean
Up to Ambient 2.08 4.24 8.38 4.59 5.77 7.79 14.88 5.57 6.01 12.46 7.18
+Same mat. reflection 2.40 3.70 7.97 4.46 5.76 7.58 14.51 5.37 5.62 10.91 6.83
+Discontinuity 2.17 3.72 7.78 4.25 5.49 7.56 14.95 5.36 5.69 10.94 6.79
+Diff. mat. reflection 1.99 3.98 8.59 4.65 6.59 8.29 15.01 5.59 6.70 11.24 7.26
+Discontinuity 2.56 3.67 8.13 4.51 6.48 7.69 14.72 5.60 5.95 11.74 7.10

Table 1. Justification for computing self reflection with reflecting
points having the same material (but different albedo than the main
point). The 3 lines on top are copied from Table 1 of main text
whereas the 2 lines on bottom contain the self reflection effect
computing with different material for each self reflection point.
These different materials were sampled but perturbing the main
Diligent material parameters by a random value ∈ [−0.1, 0.1].

imuth angles which are integer multiples of 36o) from a
Gaussian with mean 0, standard deviation 2 (taking the ab-
solute value). In addition, to allow for the possibility of no
shadow in a range of directions, each of these values is set
to 0 with a chance of 25%. We also sample 25% of the data
with completely empty shadow maps which are aimed to
approximate points is convex part of a surface. Then, the
height of the “wall” is linearly interpolated in order to get
a height value for all azimuth angles. Finally, each pixel of
the shadow map is set as 0 if the corresponding direction
(extending out of the center) is intersecting the wall.

Self reflections: As explained in the main text, we ap-
proximate the self reflection effect by sampling a few di-
rections LR (inside the shadow map) and then computing a
single light bounce from L to LR to V0. Table 1 justifies
using the same material for these reflecting points (which

aims to model the case of an object with piece-wise con-
stant material distribution). We note that in real objects,
highly concave regions are most likely to have the maxi-
mum amount of self reflection which also corresponds to
the maximum amount of shadows. To enforce this positive
correlation between the self reflection magnitude and the
amount of shadows, we first sample 5 directions LR uni-
formly in the upper hemisphere, and then only keep those
that are part of the shadow map, i.e. S(LR) = 0. Thus,
the more shaded pixels the shadow map has, the higher the
chance for a higher number of self reflection points. Note
that this sampling procedure only makes a subset of data
points that have a non empty shadow map to have any self
reflection directions; this is consistent with real data as sig-
nificant self reflection is only present in a small portion of
the data (corresponding to highly concave regions of sur-
faces or nearby very reflective objects).

Surface discontinuity: For this step, we allow 15% of the
training data to be a combination of 2 or 3 ‘subpixels’, each
having a different normal Nk and albedo ρk. As explained
in the main text, all direct reflection rd and self reflection
rr components computed and averaged. We note that the
overall normal (used for training the network) is simply the
average of the subpixel’s normals.

Ambient light: Ambient light aims to address any addi-
tional reflection, such as from objects in the background or
the even the atmosphere. Literature usually assumes a con-
stant reflection for all light sources as the multiple bounces
tend to average out the effect. None the less, as this re-
flectance component is caused by the light source, the am-
bient effect has to be proportional to its brightness φ . In ad-
dition, it is reasonable to assume high correlation with the
surface albedo (ambient reflection at a dark point should
be dark, ambient reflection at a red point should be red
etc.) as well as diminished reflection at oblique angles so
we assume correlation with N · V0). Therefore, we set
a = ρN · V0UR(0, 0.01) and apply this effect to 75 %
of the generated data points (i.e. 25% of out training data
are made ambient free). We note that a is the same for all
light sources and its contribution to the total reflectance is
multiplied by the light brightness φ (see Equation 5 in main
text).

Noises: As explained in the main text, we apply four dif-
ferent types of noise namely additive and multiplicative,
uniform and Gaussian. The most important component is
the uniform multiplicative as it is aimed to address several
unmodeled effects (i.e. near light attenuation) which effect
pixel intensities multiplicatively, and thus was set to 5%, i.e.
nMU = UR(0.95, 1.05). The rest of the hyper-parameters
for Equation 5 were: multiplicative Gaussian noise nMG =



Effect Probability Magnitude
Number of Lights N/A UI(50, 1000) dense /10 sparse
Light Brightness N/A UR(0.28, 3.2)
MERL Materials 0.25 N/A
Shadow 0.75 |N (0, 2)|
Self reflections * ≤ 5
Surface Discontinuity 0.15 UI(2, 3)
Ambient a 0.75 ρN ·V0UR(0, 0.01)
Noise Multiplicative 1 UR(0.95, 1.05)N (1, 10−4)
Noise Additive 1 UR(−10−4, 10−4) +N (0, 10−4)
Quantisation 1 16 bits

Table 2. Summary of all the data generation hyperparameters. The
probability column determines the proportion of the data with that
particular effect doing applied (some effects like discretisation and
noise are always used). the Note that self reflections are only sam-
pled when the shadow map is non empty, and the corresponding
magnitude is a positively correlated with the amount of shaded
pixels.

N (1, 10−3), Gaussian additive noise nAG = N (0, 10−4)
and uniform additive noise nAU = UR(−10−4, 10−4).

All of the relevant hyperparameters are summarised in
Table 2 and their application order is shown in Equation 5
in the main document .

3. Diligent Results
This section contains full visual comparison with CNN-

PS [1] for all Diligent objects at Figures 4 and 5.
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Figure 4. Visual comparison [1/2] of CNN-PS [1] with the proposed PX-NET (Table 2 of the main paper ) for both K=1 and K=10 on the
Diligent dataset.
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Figure 5. Visual comparison [2/2] of CNN-PS [1] with the proposed PX-NET (Table 2 of the main paper ) for both K=1 and K=10 on the
Diligent dataset.


