Supplementary Information

1. More Details about Cycle Centernet Arcitecture

As shown in Fig. 1, a wired table image will be sent into backbone to get a feature

h w
map F € R+“+*° then we use Keypoint detection module and Cycle-Pairing module
to detect the cells and learn splicing information. Keypoint detection module is a

h_ w
common detection module following Centernet, it will get a heatmap Y € R+*%+™? and

h
an offset O € R+

w
*%%2 to locate each cell center point and vertex. It uses the same

loss function: keypoint regression and offset loss Lg,; to monitor its accuracy, more
detail can be found in Centernet. And the Cycle-Pairing module with Pairing loss will
get the splicing information VCy,,, and CV,q, of all the cells. From the output of
Cycle Centernet, we can get a complex table structure which has cells’ coordinates
information. Finally, we use Parsing-Processing module to get the row and column
number of each cell.

Love 1000%

-

/
[Bbox

2o | >
—_— ¥ Bed Hog || h150: I :
— o]
ICenter-to-vertex | @ = — |
| (3 Playtime |[100% =
| o | L]
|) — o1 |
e 5 o [oooH 1 T oy
Nutrition Facts | Gbox ¢ T . hove = SO = i Nutrition Facts
Dally Val o :V—’ . | — [Bed Hog || 5o Splicing cells | ‘Daily Value*
Love 1000% erteX—to'centerr ° — Parsin Love 1000%
c | - Playtigze” 100% g -
P § | e e processinglill o[
-Pairi |oaytme ____L__T00%]
Perpetual Hunger| 200% g o ___¢ c _ySIS_PEIIIDgI_“_oE'EI_e _______ </ GD_. Perpetual Hunger| 200%
Attitude 200% o /7 \ Attitude 200%
Loyal 300% g i ° \I Toyal 300%
Stubbornness 300% | ° Stubbornness 300%
‘Bark Volume 100% | Heatmap Oq Love hosod [Love hooodd ! [Bark Volume 700%
I > | Cuddleability 200%
| Bed Heg 190% [Bed Hog 150% : * AT CRve Rappine Yoy
|
| ° Playtime [100% [Playtime | 1006 ||
Offset I
|
T > . %o Center Vertex !
|
‘o Keypoint detection A

Figure 1. Network Arcitecture

2. Parsing-Processing Module

The Parsing-Processing module is the last step to parsing cell row and column
information from a complete table. Below is the pseudo codes mentioned in 3.2 and 4.3.

Algorithm 1: Calculating logical coordinates of cells.

1 Input: a set of table cells C = {ci}!ill, where ¢! = (pt¥),k € [1,4].
2 QOutput: a set of logical coordinates of cells LC = {lci}ﬁll.
3 foreach ¢! € C do
4 leftedge’ = [pt®,pt®], rightedge' = [pt't, pti?].
5 upedge' = [pt®, ptt], downedge® = [pt®, pt?].
6 end for
5 # merging edges sharing same pt into lines
E, = MERGE ({leftedge)\, {rightedge'}\!) ,E, = MERGE ({upedge}!!,, {downedge'}l!).
7 sort E, according to x coordinates.

sort E, according to y coordinates.
foreach ¢! € C do
10 startrow! = INDEX(upedge® — Ey).
11 endrow' = INDEX(downedge® — E;) — 1.
11 startcolumn' = INDEX(leftedge’ — E,).
12 endcolumn' = INDEX(rightedge® — E,) — 1.
13 Ic' = (startrow’.endrow!, startcolumn?, endcolumn?)
14 end for

First, it split every cell into 4 bounding edges, then merge the up edges and down
edges to horizontal lines and merge left edges and right edges to vertical lines according
to cell connectivity. Next, it sort horizontal lines, vertical lines and index them from 0.
Finally, it ranks cells by line index and outputs row/column information. The detailed
pseudo code will be given in the supplementary materials.

3. The heuristic grouping scheme

The heuristic grouping scheme is mentioned in 3.2 Baselines and Benchmark
Evaluation, which is designed to splice all the discrete cells into structured digital tables.
Below is the pseudo codes.

Algorithm 2: Grouping discrete cells into structured digital tables. C = {Ci}ﬁl1 is a set of table cells that
composed of width height and four vertex coordinates, where ¢! = (W', b}, v¥), vk = (x¥,y¥*) k €
[1,4].

1 Input: C = {c}!. r = 0.1, disgyesn = 30.
2 Output: C = {Ci}ﬁll. Vertex coordinates in C are updated.
3 foreach ¢! € C do

4 foreach vk € ¢! do

5 xof fsetl = max (W' x1,4.0), yoffsetl = max (h x1,4.0) keep=[]
6 for each ¢/ € C but j!=i do

7 xof fset2 = max (W’ *r,4.0), yoffset2 = max (h/ * r,4.0)

8
9

for each v/t € ¢/ do

xdist = |xIt = x|, ydist = |yt — y*|, dist = \/ (x/' — x¥#)2 + (It — yik)2
10 if xdist > xoffsetl or xdist > xoffset2 or ydist > yoffsetl or ydist >
yoffset2 or dis > diSipresn then

11 continue

12 else

13 Push the index of v/! in keep
14. end for

15 end for

16 Push the index of v in keep

17 Calculate the mean value of all vertex coordinates recorded in keep, and assign the mean value
as the vertex coordinates of corresponding cells in C.

18 end for

19 end for

20 The vertex not refined in C are spliced to the nearest vertex.

We need to splice the discrete cells twice, step 1: for each vertex of cells, calculate
the distance from all the vertices of other cells to this vertex, if the distance is within a
certain range, calculate the mean value of these vertex coordinates, and then assign the
value to all these vertices. Step 2: for all the points that have not been refined in step 1,
find the nearest refined vertex, if a vertex satisfies the condition in step 1, the points
that have not been refined are spelled onto the output from step 1.

