
Supplementary Information

1. More Details about Cycle Centernet Arcitecture

As shown in Fig. 1, a wired table image will be sent into backbone to get a feature

map 𝐹 ∈ 𝑅
!
"×

#
"×", then we use Keypoint detection module and Cycle-Pairing module

to detect the cells and learn splicing information. Keypoint detection module is a

common detection module following Centernet, it will get a heatmap	𝑌 ∈ 𝑅
!
"×

#
"×# and

an offset 𝑂 ∈ 𝑅
!
"×

#
"×# to locate each cell center point and vertex. It uses the same

loss function: keypoint regression and offset loss 𝐿$%& to monitor its accuracy, more
detail can be found in Centernet. And the Cycle-Pairing module with Pairing loss will
get the splicing information 𝑉𝐶'() and 𝐶𝑉'() of all the cells. From the output of
Cycle Centernet, we can get a complex table structure which has cells’ coordinates
information. Finally, we use Parsing-Processing module to get the row and column
number of each cell.

Figure 1. Network Arcitecture

2. Parsing-Processing Module

The Parsing-Processing module is the last step to parsing cell row and column

information from a complete table. Below is the pseudo codes mentioned in 3.2 and 4.3.

Algorithm 1: Calculating logical coordinates of cells.

1 Input: a set of table cells 𝐶 = {𝑐$}$%&
|(| , where 𝑐$ = (𝑝𝑡$)), 𝑘 ∈ [1,4].

2 Output: a set of logical coordinates of cells 𝐿𝐶 = {𝑙𝑐$}$%&
|(| .

3 for each 𝑐$ ∈ 𝐶 do
4 𝑙𝑒𝑓𝑡𝑒𝑑𝑔𝑒$ = [𝑝𝑡$*, 𝑝𝑡$+], 𝑟𝑖𝑔ℎ𝑡𝑒𝑑𝑔𝑒$ = [𝑝𝑡$&, 𝑝𝑡$,].
5 𝑢𝑝𝑒𝑑𝑔𝑒$ = [𝑝𝑡$*, 𝑝𝑡$&], 𝑑𝑜𝑤𝑛𝑒𝑑𝑔𝑒$ = [𝑝𝑡$+, 𝑝𝑡$,].
6 end for
5 # merging edges sharing same 𝑝𝑡 into lines

𝐸- = 𝑀𝐸𝑅𝐺𝐸({𝑙𝑒𝑓𝑡𝑒𝑑𝑔𝑒$}$%&
|(| , {𝑟𝑖𝑔ℎ𝑡𝑒𝑑𝑔𝑒$}$%&

|(|),𝐸. = 𝑀𝐸𝑅𝐺𝐸({𝑢𝑝𝑒𝑑𝑔𝑒$}$%&
|(| , {𝑑𝑜𝑤𝑛𝑒𝑑𝑔𝑒$}$%&

|(|).
7 sort 𝐸- according to x coordinates.
8 sort 𝐸- according to y coordinates.
9 for each 𝑐$ ∈ 𝐶 do
10 𝑠𝑡𝑎𝑟𝑡𝑟𝑜𝑤$ = 𝐼𝑁𝐷𝐸𝑋(𝑢𝑝𝑒𝑑𝑔𝑒$ → 𝐸.).
11 𝑒𝑛𝑑𝑟𝑜𝑤$ = 𝐼𝑁𝐷𝐸𝑋(𝑑𝑜𝑤𝑛𝑒𝑑𝑔𝑒$ → 𝐸.) − 1.
11 𝑠𝑡𝑎𝑟𝑡𝑐𝑜𝑙𝑢𝑚𝑛$ = 𝐼𝑁𝐷𝐸𝑋(𝑙𝑒𝑓𝑡𝑒𝑑𝑔𝑒$ → 𝐸-).
12 𝑒𝑛𝑑𝑐𝑜𝑙𝑢𝑚𝑛$ = 𝐼𝑁𝐷𝐸𝑋(𝑟𝑖𝑔ℎ𝑡𝑒𝑑𝑔𝑒$ → 𝐸-) − 1.
13 𝑙𝑐$ = (s𝑡𝑎𝑟𝑡𝑟𝑜𝑤$,𝑒𝑛𝑑𝑟𝑜𝑤$, 𝑠𝑡𝑎𝑟𝑡𝑐𝑜𝑙𝑢𝑚𝑛$, 𝑒𝑛𝑑𝑐𝑜𝑙𝑢𝑚𝑛$)
14 end for

First, it split every cell into 4 bounding edges, then merge the up edges and down

edges to horizontal lines and merge left edges and right edges to vertical lines according
to cell connectivity. Next, it sort horizontal lines, vertical lines and index them from 0.
Finally, it ranks cells by line index and outputs row/column information. The detailed
pseudo code will be given in the supplementary materials.

3. The heuristic grouping scheme
The heuristic grouping scheme is mentioned in 3.2 Baselines and Benchmark

Evaluation, which is designed to splice all the discrete cells into structured digital tables.
Below is the pseudo codes.

Algorithm 2: Grouping discrete cells into structured digital tables. 𝐶 = {𝑐$}$%&
|(| is a set of table cells that

composed of width,height and four vertex coordinates, where 𝑐$ = (𝑤$, ℎ$, 𝑣$)), 𝑣$) = (𝑥$) , 𝑦$)), 𝑘 ∈
[1,4].

1 Input: 𝐶 = {𝑐$}$%&
|(| . 𝑟 = 0.1, 𝑑𝑖𝑠/.012. = 30.

2 Output: 𝐶 = {𝑐$}$%&
|(| . Vertex coordinates in C are updated.

3 for each 𝑐$ ∈ 𝐶 do
4 for each 𝑣$) ∈ 𝑐$ do
5 𝑥𝑜𝑓𝑓𝑠𝑒𝑡1 = max	(𝑤$ ∗ 𝑟, 4.0), 𝑦𝑜𝑓𝑓𝑠𝑒𝑡1 = max	(ℎ$ ∗ 𝑟, 4.0),keep=[]
6 for each 𝑐3 ∈ 𝐶 but j!=i do
7 𝑥𝑜𝑓𝑓𝑠𝑒𝑡2 = max	(𝑤3 ∗ 𝑟, 4.0), 𝑦𝑜𝑓𝑓𝑠𝑒𝑡2 = max	(ℎ3 ∗ 𝑟, 4.0)
8 for each 𝑣34 ∈ 𝑐3 do
9 𝑥𝑑𝑖𝑠𝑡 = X𝑥34 − 𝑥$)X, 𝑦𝑑𝑖𝑠𝑡 = X𝑦34 − 𝑦$)X, 𝑑𝑖𝑠𝑡 = Y(𝑥34 − 𝑥$)), + (𝑦34 − 𝑦$)),
10 if 𝑥𝑑𝑖𝑠𝑡 > 	𝑥𝑜𝑓𝑓𝑠𝑒𝑡1 or 𝑥𝑑𝑖𝑠𝑡 > 	𝑥𝑜𝑓𝑓𝑠𝑒𝑡2 or 𝑦𝑑𝑖𝑠𝑡 > 	𝑦𝑜𝑓𝑓𝑠𝑒𝑡1 or 𝑦𝑑𝑖𝑠𝑡 >
	𝑦𝑜𝑓𝑓𝑠𝑒𝑡2 or 𝑑𝑖𝑠 > 𝑑𝑖𝑠/.012. then
11 continue
12 else
13 Push the index of 𝑣34 in keep
14. end for
15 end for
16 Push the index of 𝑣$) in keep
17 Calculate the mean value of all vertex coordinates recorded in keep, and assign the mean value
as the vertex coordinates of corresponding cells in C.
18 end for
19 end for
20 The vertex not refined in C are spliced to the nearest vertex.

We need to splice the discrete cells twice, step 1: for each vertex of cells, calculate

the distance from all the vertices of other cells to this vertex, if the distance is within a
certain range, calculate the mean value of these vertex coordinates, and then assign the
value to all these vertices. Step 2: for all the points that have not been refined in step 1,
find the nearest refined vertex, if a vertex satisfies the condition in step 1, the points
that have not been refined are spelled onto the output from step 1.

