
A. 3D Transformations and Their Relaxations

In this section, we define the semantic transformations
that we consider (App. A.1) and provide the taylor relax-
ations for the transformations (App. A.2), as well as their Ja-
cobians for DeepG3D (App. A.4). We also give some back-
ground on the interval arithmetic used to compute bounds
on the approximation error (App. A.3).

A.1. Semantic Transformations

3DCertify can handle a wide range of semantic trans-
formations, including 3D rotation around any axis with
✓ 2 R as defined in Eq. (5). We can also certify shearing,
twisting, and tapering of a point cloud, defined pointwise
(since each point is transformed independently) for a point
p = (x, y, z)T as

Shear(p,✓) =

0

@
✓1z + x
✓2z + y

z

1

A

Twist(p, ✓) =

0

@
x cos(✓z)� y sin(✓z)
x sin(✓z) + y cos(✓z)

z

1

A

Taper(p,✓) =

0

@
(12✓

2
1z + ✓2z + 1)x

(12✓
2
1z + ✓2z + 1)y

z

1

A

or any composition of these functions.

A.2. Taylor Relaxations

In Section 3.2, we presented the general form of our
linear bounds fl(P,✓) and fu(P,✓) for any twice contin-
uously differentiable transformation function f(P,✓), as
well as the relaxation for RotZ as an example. Rotation
around the other two axes, i.e., RotX and RotY can be
computed analogously. Here, we list the linear relaxations
for the remaining transformation functions we use in our
experiments.

All transformations can be applied to each point indi-
vidually, allowing us to denote them for a single point as
f(p,✓) with p = (x, y, z)T 2 P . For each transforma-
tion, we list the first-order taylor polynomial Q(p,✓) and
remainder R(p,✓), such that f(p,✓) = Q(p,✓)+R(p,✓).
As described in Section 3.2, we use interval arithmetic
(App. A.3) to get real-valued bounds lR R(p, ✓̄) uR

for the interval ✓̄ = [l✓,u✓] with t = (l✓ + u✓)/2 and
therefore the lower constraint fl(p,✓) = Q(p,✓) + lR and
upper constraint fu(p,✓) = Q(p,✓) + uR.

Shearing:

QShear(p,✓) =

0

@
t1z + x
t2z + y

z

1

A

+

0

@
z
0
0

1

A (✓1 � t1) +

0

@
0
z
0

1

A (✓2 � t2)

RShear(p, ✓̄) = 0

Twisting:

QTwist(p, ✓) =

0

@
cos(tz)x� sin(tz)y
sin(tz)x+ cos(tz)y

z

1

A

+

0

@
�z(sin(tz)x+ cos(tz)y)
z(cos(✓z)x� sin(✓z)y)

0

1

A (✓ � t)

RTwist(p, ✓̄) =
1

2

0

@
�z2(cos(✓̄z)x� sin(✓̄z)y)
�z2(sin(✓̄z)x+ cos(✓̄z)y)

0

1

A (✓̄ � t)2

Tapering:

QTaper(p,✓) =

0

@
(12 t

2
1z + t2z + 1)x

(12 t
2
1z + t2z + 1)y

z

1

A

+

0

@
t1zx
t1zy
0

1

A (✓1 � t1) +

0

@
zx
zy
0

1

A (✓2 � t2)

RTaper(p, ✓̄) =
1

2

0

@
zx
zy
0

1

A (✓̄1 � t1)
2

A.3. Interval Arithmetic

When evaluating functions such as R(P,✓) on intervals,
we use the following standard operators:

� [xl, xu] = [�xu,�xl]

[xl, xu] + [yl, yu] = [xl + yl, xu + yu]

[xl, xu]� [yl, yu] = [xl � yu, xu � yl]

[xl, xu] · [yl, yu] = [min(xlyl, xlyu, xuyl, xuyu),

max(xlyl, xlyu, xuyl, xuyu)]

For mixed operations with scalars, i.e., a ⇤ [xl, xu], we can
treat the scalar as an interval with one element: [a, a] ⇤
[xl, xu].

In addition to these basic operators, we use the following

sine function:

sin([xl, xu]) = [yl, yu], where

yl =

(
�1 �⇡

2 + 2k⇡ 2 [xl, xu]

min(sin(xl), sin(xu)) otherwise

yu =

(
1 ⇡

2 + 2k⇡ 2 [xl, xu]

max(sin(xl), sin(xu)) otherwise

with k 2 Z. Similarly, we can define the cosine function:

cos([xl, xu]) = [yl, yu], where

yl =

(
�1 ⇡ + 2k⇡ 2 [xl, xu]

min(cos(xl), cos(xu)) otherwise

yu =

(
1 2k⇡ 2 [xl, xu]

max(cos(xl), cos(xu)) otherwise.

To compute the square x2 of x = [xl, xu], we could sim-
ply use x·x. While sound, we can compute a tighter interval
for some cases:

[xl, xu]
2 =

8
><

>:

[x2
l , x

2
u] xl � 0

[x2
u, x

2
l] xu 0

[0,max(x2
l , x

2
u)] otherwise.

Using these operators and functions, we can evaluate all
of our relaxations and their derivatives with intervals as in-
put.

A.4. Jacobian Matrices

Computing linear relaxations using Deepg3D (Sec-
tion 3.1) requires the Jacobians of our 3D transformations,
both with respect to the transformation parameters and with
respect to the point cloud inputs. For example, for 3D rota-
tion around the z-axis with ✓ 2 R, as defined in Eq. (5), we
compute

@pRotZ(p, ✓) =

0

@
cos(✓) � sin(✓) 0
sin(✓) cos(✓) 0

0 0 1

1

A , (10)

and

@✓RotZ(p, ✓) =

0

@
�x sin(✓)� y cos(✓)
x cos(✓)� y sin(✓)

z

1

A . (11)

The corresponding Jacobians for Shear, Twist and Taper
(Section 4.1) are given by:

@pShear(p,✓) =

0

@
1 0 ✓1
0 1 ✓2
0 0 1

1

A

@✓Shear(p,✓) =

0

@
z 0
0 z
0 0

1

A

@pTwist(p, ✓) =

0

@
cos(✓z) �sin(✓z) �✓(sin(✓z)x+ cos(✓z)y)
sin(✓z) cos(✓z) ✓(cos(thetaz)x� sin(✓z)y)

0 0 1

1

A

@✓Twist(p, ✓) =

0

@
�z(sin(✓z)x+ cos(✓z)y)
z(cos(✓z)x� sin(✓z)y)

0

1

A

@pTaper(p,✓) =

0

@
1
2✓

2
1z + ✓2z + 1 0 (12✓

2
1 + ✓2)x

0 1
2✓

2
1z + ✓2z (12✓

2
1 + ✓2)y

0 0 1

1

A

@✓Taper(p,✓) =

0

@
✓1zx zx
✓1zy zy
0 0

1

A

B. Proof for Composition of Transformations

To show that our taylor approximations introduced in
Section 3.2 can be applied to the composition of multiple
transformations, we show that the composition of two twice
continuously differentiable functions is itself twice contin-
uously differentiable. That is, given two twice continuously
differentiable functions f : Rn 7! Rp and g : Rm 7! Rn,
we want to show that h = f � g is also twice continuously
differentiable.

To simplify notation, we define y = f(u) and u =
g(x). Using the chain rule, we know that the first-order
derivatives exist and can, with slight liberties in notation,
be written as:

@y

@xi
=

X

k

@y

@uk

@uk

@xi
. (12)

Furthermore, we know that f and g are twice differentiable,
hence Eq. (12) consists of compositions, products and sums
of differentiable functions and thus is again differentiable.
We therefore conclude that f�g is itself twice differentiable.

It remains to be shown that the second-order derivatives
are continuous. Using Faà di Bruno’s formula, we can write
the second-order derivatives as:

@2y

@xi@xj
=

X

k

@y

@uk

@2uk

@xi@xj
+
X

k

X

l

@2y

@uk@ul

@uk

@xi

@ul

@xj
.

(13)
We know that f , g and their first- and second-order deriva-
tives are continuous. Equation (13) is therefore a combi-
nation of compositions, products and sums of continuous
functions, which means it is itself continuous. This means
f � g is twice continuously differentiable and we can there-
fore calculate Taylor bounds for any composition of twice
continuously differentiable transformations.

C. PointNet Architectures

For both object classification and part segmentation, we
use PointNet [36] models. Below we present the exact layer
configurations used.

Object Classification

For object classification, we use the following network
architecture:

No Type Normalization Activation Features

1 Linear BatchNorm ReLU 64
2 Linear BatchNorm ReLU 64
3 Linear BatchNorm ReLU 64
4 Linear BatchNorm ReLU 128
5 Linear BatchNorm ReLU 1024

6 MaxPool 1024

7 Linear BatchNorm ReLU 512
8 Linear BatchNorm ReLU 256
9 Linear SoftMax num classes

The first block of linear (fully connected) layers (no 1
to 5) is executed on each point individually, but sharing
weights across all points. We implement this via 1D
convolution layers with stride 1 as in the original work by
Qi et al. [36]. Layer 6 pools each feature across points.
During training, a dropout of 30% is applied for layer 8.

Part Segmentation

No Type Normalization Activation Features

1 Linear BatchNorm ReLU 64
2 Linear BatchNorm ReLU 128
3 Linear BatchNorm ReLU 256
4 Linear BatchNorm 128

5 MaxPool 128
6 Repeat 128
7 Concatenate (1, 2, 3, 6) 576

8 Linear BatchNorm ReLU 256
9 Linear BatchNorm ReLU 128
10 Linear SoftMax num parts

The architecture for part segmentation differs in some
ways, since it needs to predict a label for each point in-
dividually. Again, the first block of linear layers (1-4) is
applied to each point individually with shared weights and
max pool combines per-point features to one global feature
vector. Layer 7 concatenates the local features of layers 1 to
3 with the global feature from layer 5 for each point by sim-
ple concatenation. The last 3 linear layers are again applied
individually for each point on the combined local and global
feature and predict the part the particular point belongs to.

Since DeepPoly [44] cannot handle this architecture for
part segmentation, we implement novel relaxations for the
concatenation and repeat layers. In particular, the trans-
former for concatenation requires the verifier to handle lay-

✏ 0.005 0.010 0.015

DeepPoly [44] 72.8 33.3 3.7
Ours 79.0 38.3 6.2

Table 6. Percentage of certified images with different max pool re-
laxations for two different image classification tasks for `1 noise
perturbations.

Group Size Certified (%) Time (s)

4 93.5 56
8 93.5 76
12 93.5 119

Table 7. Percentage of certified point clouds with 64 points for
different max pool group sizes for ±3° rotation.

ers with multiple predecessors, which is out of reach for
current state-of-the-art verifiers. We provide our implemen-
tation in the accompanying code.

D. Additional Experiments

In this section, we present additional empirical evidence
for the benefits of our improved max pool relaxations in
App. D.1, and investigate the effect different max pool
group sizes have on certification results. We also show that
Taylor3D efficiently scales to real-world point cloud sizes
in App. D.2, with running times of only a few milliseconds.

D.1. Improved Max Pool Relaxation

Applications beyond point clouds In Section 4.2, we
show that our improved max pool relaxation, introduced in
Section 3.3, significantly improves certification for Point-
Net models compared to the previous state-of-the-art, es-
pecially for models with larger pooling layers. Here, we
demonstrate that our new relaxations are useful beyond
PointNet, i.e., for any network architecture containing max
pool layers. To that end, we show certification results for
a convolutional image classification model with nine conv/-
linear layers and two max pool layers for the MNIST [21]
dataset in Table 6, comparing our improved relaxations with
the best baseline. Our improved max pool relaxations con-
sistently outperform the previous state-of-the-art across all
✏-values, significantly increasing the number of images for
which we can certify correct classification. These results
demonstrate that models beyond the 3D point cloud domain
benefit from our new relaxations.

Max pool group size Our improved max pool relaxation,
introduced in Section 3.3, requires computing the convex
hull of the polyhedral relaxation, for which the running time
grows exponentially in the number of input neurons. This

RotZ Twist

Points Taylor3D DeepG3D Taylor3D DeepG3D

100 000 0.036 393 0.070 366
200 000 0.070 887 0.169 848
300 000 0.104 1502 0.266 1496

Table 8. Running time in seconds to compute the relaxations
for different real-world point cloud sizes with Taylor3D and
DeepG3D. Taylor3D achieves speed-ups of up to 14 442x for
RotZ and 5 624x for Twist.

is why we recursively split the max pool operation into sub
groups. Table 7 shows the certification accuracy and aver-
age running time of DeepPoly with the improved max pool
relaxation for different group sizes. Increasing the group
size beyond this range is impractical (i.e., more than 3h
per point clouds) due to the exponential scaling behavior
of convex hull computation. Nevertheless, our experiments
indicate that our recursively partitioned relaxation is not
impeded by this constraint since the different group sizes
do not influence certification performance (while, in theory,
computing the relaxation over all inputs should be most pre-
cise), allowing us to optimize for improved running time.

D.2. Scaling

3D processing of LIDAR point cloud data is an active
area of research. The main challenge is the huge size of
point clouds (in the order of 100k points [15]) that have
to be processed in real-time for most applications. Both
DeepG3D and Taylor3D scale linearly with point cloud size
and can be parallelized perfectly across points. Table 8
shows the running time of computing linear relaxations for
large point cloud sizes using Taylor3D and Deepg3D re-
spectively. All experiments are run on an AMD EPYC
7601 processor with 2.2 GHz. Taylor3D is efficiently im-
plemented as vectorized operations using Numpy [18] and
run on a single thread. DeepG3D uses the original par-
allelized implementation [2] and runs in parallel with 16
threads. The results show that, while both implementations
scale linearly in the point cloud size, Taylor3D is signifi-
cantly more efficient, computing relaxations in only a few
milliseconds event for large point cloud sizes on a single
thread, thereby achieving speed-ups of up to 14 442x over
DeepG3D. This enables easy and efficient scaling to real-
world applications.

E. Max Pool Analysis

The state-of-the-art linear relaxations for max pool are
imprecise, especially for many inputs to the pooling layer.
We demonstrate this by plotting the mean divergence be-
tween DeepPoly’s upper and lower bounds for each of
PointNet’s layers in Fig. 2, where we observe that the

1 2 3 4 5 6 7 8 9
Network Layer

10�1

100

101

102

m
ea
n
(u

i
�
l i
)

Max Pooling

Figure 2. Plotting the mean difference between upper and lower
bounds of neurons after each layer shows that the precision sig-
nificantly decreases after the max pool and therefore motivates the
need for improvement. Note the logarithmic scaling of the y-axis.

bounds start to significantly diverge after the max pool
layer.

