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Table 1: AP11 Performance of the Car category on the KITTI validation set. We highlight the best results in bold.

Method
3D@IoU=0.7 BEV@IoU=0.7 3D@IoU=0.5 BEV@IoU=0.5

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
Mono3D [2] 2.53 2.31 2.31 5.22 5.19 4.13 - - - -
OFTNet [12] 4.07 3.27 3.29 11.06 8.79 8.91 - - - -
Deep3DBox [10] 5.85 4.19 3.84 9.99 7.71 5.30 27.04 20.55 15.88 30.02 23.77 18.83
FQNet [8] 5.98 5.50 4.75 9.50 8.02 7.71 28.16 28.16 28.16 32.57 24.60 21.25
Mono3D++ [5] 10.60 7.90 5.70 16.70 11.50 10.10 42.00 29.80 24.20 46.70 34.30 28.10
GS3D [6] 13.46 10.97 10.38 - - 32.15 29.89 29.89 - -
MonoGRNet [11] 13.88 10.19 7.62 50.51 36.97 30.82 - - - -
MonoDIS [13] 18.05 14.98 13.42 24.26 18.43 16.95 - - - -
M3D-RPN [1] 20.27 17.06 15.21 25.94 21.18 21.18 48.96 39.57 33.01 53.35 39.60 31.76
RTM3D [7] 20.77 20.77 16.63 25.56 22.12 20.91 54.36 41.90 35.84 57.47 44.16 42.31
RARNet [9]+GS3D [6] 11.63 10.51 10.51 14.34 12.52 11.36 30.60 26.40 22.89 38.24 32.01 28.71
RARNet [9]+MonoGRNet [11] 13.84 10.11 7.59 24.84 19.27 16.20 50.27 36.67 30.53 53.91 39.45 32.84
RARNet [9]+M3D-RPN [1] 23.12 19.82 16.19 29.16 22.14 18.78 51.20 44.12 32.12 57.12 44.41 37.12
GUP Net (Ours) 25.76 20.48 17.24 34.00 24.81 22.96 59.36 45.03 38.14 62.58 46.82 44.81

0. 3D detection visualization
We show some detection results of our method. We

first estimate the 3D bounding boxes by our method, and
then project the boxes on the image plane to draw them on
the scene image. The results are shown in Figure 1. We
also give additional visualization of scores, we draw the 2D
score p2d, the depth score (3D scores conditioned on the 2D
information) p3d|2d and the final 3D scores p3d in Figure 2,
showing that both p2d and p3d|2d contribute to the final score
and leading to better detection reliability.

1. Further Comparison
There are some works that do not report the newly re-

leased AP40 metric on the KITTI validation dataset. So we
do not compare them on the validation set in the original
paper. Here, we show the further comparison under AP11
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metric on the validation set with the state-of-the-art meth-
ods in Table 1.

Under the AP11 setting, our method gets the best com-
peting performance whatever the IoU threshold is. Specifi-
cally, our method surpasses RAR-Net [9] by 2.64%/4.84%
AP under the easy setting at 0.7 IoU threshold. And for the
0.5 IoU threshold, we also achieve 8.16% and 5.46% gains
for 3D/BEV detection under the easy setting respectively.
This shows the high-precision performance of our method.

2. Loss function details

In this section, we would describe more details about
loss functions.

2.1. 2D Detection loss function details

Our 2D detection module is built on the CenterNet [4].
Details can be seen in the original paper. The heatmap loss



Figure 1: Projected 3D Detection results of our method. We use green, blue and red to indicate car,pedestrian and cyclist
categories, respectively.
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Figure 2: Visualization of different kinds of scores.

is defined as:

Lheatmap = Focal(Y, Y gt)
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where Y represents the predicted heatmaps and Y gt is the

ground-truth heatmaps.
The 2D size loss function is defined as:

Lsize2d = − 1

N

N∑
k=1

(
|w2d(k)− wgt

2d(k)|+ |h2d(k)− hgt
2d(k)|

)
,

(2)
where N is the total ground-truth object number on the

current batch. The wgt
2d and hgt

2d are ground-truth size of the
k-th object.

The 2D offset loss function is:

Loffset2d =
1

N

N∑
k=1

(
|δu2d(k)− δu,gt2d (k)|+ |δv2d(k)− δv,gt2d (k)|

)
.

(3)
The δu,gt2d (k) and δv,gt2d (k) are the ground-truth offsets of

the k-th object.

2.2. Basic 3D Detection loss function details
The basic 3D detection loss function of our method fol-

lows the MonoPair [3]. The angle prediction task aims to
predict the alpha angle [10, 14], which is the relative rota-
tion of the camera viewing angle. The original 360◦ angle
range is split into 12 bins and each bin covers 30◦ range. Its
loss function is the MultiBin loss [10]:

Langle = Lconf (θ, θ
gt) + Lloc(θ, θ

gt). (4)

And for the the ROI 3D demension estimation, its loss func-
tion is:

Lsize3d = Lh3d + |w3d − wgt
3d|+ |l3d − lgt3d|. (5)

Finally, the ROI based 3D offset loss function is:

Loffset3d = |δu3d(k)− δu,gt3d (k)|+ |δv3d(k)− δv,gt3d (k)|. (6)

2.3. Hierarchical Task Learning details

In this subsection, we would give some computation de-
tails of the proposed Hierarchical Task Learning (HTL). We



first give a brief review of the HTL. Our HTL strategy as-
signs loss weights by computing the learning situation for
each task. And the learning situation indicator (Eq 7 in the
supplementary material. Eq 10 in the original paper.) es-
sentially compares the mean loss trends between the current
K epochs and the first K epochs. It can be interpreted as
comparing information in two sliding windows as shown in
Figure 3. In the following, we would give the details about
the algorithm initialization and the learning indicator.

Initialization. The learning situation indicator requests
both the current and the first sliding windows information.
So before getting the first K epochs information, the HTL
cannot be started. So we set the first K epochs (K is set
as 5, which is equal to the warm-up period length.) as the
initialization period of the HTL. Also, the first 5 epochs are
also the warm-up period of the total model. In this period,
the loss weights of the 2nd and 3rd task stages are all set to
zero. And the HTL gathers the loss values and stores them
as the first sliding window information.

Learning situation indicator. We give the equation of
the learning situation indicator again here:

lsj(t) =
DFj(K)−DF j(t)

DFj(K)
,

DFj(t) =
1

K

t−1∑
t̂=t−K

|L′
j

(
t̂
)
|,

(7)

where L′
j(t) is the loss derivative of the j-th task at t-th

epoch. We give an online computation way about that here:

L′
j(t) =

Lj(t+∆t)− Lj(t)

∆t︸ ︷︷ ︸
left derivative

+
Lj(t)− Lj(t−∆t)

∆t︸ ︷︷ ︸
right derivative

=
Lj(t+∆t)− Lj(t−∆t)

2∆t

∆t→1
=

Lj(t+ 1)− Lj(t− 1)

2
,

(8)

where the Lj(t) means the averaged loss function value of
the t-th epoch. At the time border of the sliding window,
we only compute one-sided derivative.

To better understand the learning situation indicator, we
show an example in Figure 3. As the loss function de-
creases, the value of the learning situation gradually in-
creases to 1. And the learning situation at t-th epoch is de-
cided by both the first K epochs information and the current
K epochs trends.
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