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Overview
In this supplementary material, we provide additional

content to complement the paper, which are listed below:

• In Section A, we present detailed configurations of PU-
EVA and discuss the influence of number of R anchor
points on the performance.

• In Section B, we show qualitative comparison of up-
sampling results of EVA upsampling and NodeShuf-
fle [3].

• In Section C, we show a typical failure case of PU-
EVA.

• In Section D, we visualize and discuss PU-EVA results
on real-scanned LiDAR point clouds.

A. Configuration of PU-EVA
The network configurations of our PU-EVA are listed as

follows.

1. Dense Feature Extraction: Four dense blocks based
on EdgeConv with skip-connections are employed in
this module. Within each dense block, three con-
volutional layers with output channels 24 are skip-
connected; between each dense block, the features pro-
duced by each block are fed as input to all follow-
ing blocks, resulting the output channels of four dense
blocks as 120, 240, 360 and 480, sequentially.

2. Edge-Vector based Approximation (EVA) Upsam-
pling: The output channels of 1×1 convolutional layer
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for high dimensional features g and h are 240, and that
for l are 480. K is set as 12 to obtain the local neigh-
borhood and R is set as 6 for anchor points. l is max-
pooled into dimension of N × 1× 480 before tiling by
upsampling rate (R = 6) to expand as N × 6 × 480.
The output of affine combinations N × 6 × 3 is then
concatnated with the expanded l to get features with
dimension N × 6 × (480 + 3) for coordinates regres-
sion.

3. Coordinate Reconstruction: Displacement error
from the second-order error term of Taylor’s Expan-
sion is estimated in this module by utilizing three fully
connect layers (MLPs) with output channels 256, 128
and 64, respectively. The upsampling coordinates are
reconstructed on the last coordinate regression layer
with output dimension of RN × 3.

Besides, all the convolutional layers and fully connected
layers in the network are followed by the ReLU activation
function, except for the last coordinate regression layer.

B. More qualitative comparison of upsampling
results

To explore the efficacy of proposed EVA upsampling
unit, we visualize the upsampling results of EVA upsam-
pling and the best upsampling unit in PU-GCN [3], named
NodeShuffle. As shown in the blown-up views in Figure 1,
EVA upsmapling unit achieves better upsampling results in
term of fine-grained details, it confirms with our intuition
that our EVA upsampling retains richer information from
sharp edges and tiny structures. Instead of previous meth-
ods simply duplicating the original points, NodeShuffle [3]
encodes spatial information from neighboring points and
learns new points from the latent space. However, there
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is no further geometric operations on features, making the
upsampling results inferior to our method.

C. Failure cases
As shown in Figure 4 of the main paper, our method han-

dles fine-grained details well, such as the ox’s ear and the
statue’s leg. However, there are still some very challenging
cases that the upsampled point clouds fail to approximate
the complex geometries accurately. The blown-up views of
Figure 2 visualize details of the upsampling results, where
the compared state-of-the-art method PU-GAN [2] suffers
from the same problem as well.

D. Real-scanned LiDAR results
The upsampling results of PU-EVA on LiDAR-scanned

street scenes from Kitti [1] is provided in Figure 3. Visu-
alization results show that our PU-EVA recovers the sparse
and non-uniform input to obtain sharper object shapes of
pedestrian and cyclist, etc.
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Figure 1. Qualitative comparison of upsampling unit with NodeShuffle [3]

 

Figure 2. A typical failure case for PU-EVA.



Figure 3. Real-world testing by applying PU-EVA to LiDAR-scanned street scenes from Kitti [1].


