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Overview
This supplementary material is organized as follows.

• In Section A, we present more experiments using different noise models such as non-isotropic Gaussian noise, uni-
directional noise, Laplace noise, uniform noise, and discrete noise.

• In Section B, we present the full results and analysis of ablation studies.

• In Section C, we adapt the unsupervised training objective of TotalDn [4] to train an unsupervised adaptation of our
model, and compare the adaptation to TotalDn.

• In Section D, we present hyper-parameters and other implementation details for reproducing our model.

• In Section E, we show more visual results on both synthetic point clouds and real-world point clouds.

A. Additional Quantitative Results
In this section, we present more quantitative results under different noise types. Note that, though evaluated under different

noise types, the model is trained only using Gaussian noise. The purpose of these additional experiments is to show our
model’s generalizability to different noise types which are unseen during training.

We only present the results of stronger baselines (MRPCA[6], GLR[9], PCNet[7], and DMR[5]) and leave out the weaker
ones because their performance is clearly inferior.

A.1. Non-isotropic Gaussian Noise

We set the covariance matrix of the 3D Gaussian distribution to the following positive definite matrix:
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where s is the scale parameter controlling the magnitude of noise. We set s to 1%, 2% and 3% of the shape’s bounding sphere
radius to generate point clouds at different noise levels.

The table below is the result.
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Test-set: PU 10K 1% 10K 2% 10K 3% 50K 1% 50K 2% 50K 3%
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

MRPCA [6] 2.676 0.689 3.605 1.007 5.108 2.081 0.669 0.102 2.058 1.088 5.789 4.138
GLR [9] 2.910 1.048 3.779 1.332 4.975 2.195 0.694 0.163 1.605 0.850 3.880 2.758

PCNet [7] 3.432 1.129 7.393 3.940 12.952 8.654 1.040 0.344 1.458 0.627 2.414 1.402
DMR [5] 4.487 1.718 5.046 2.148 5.916 2.866 1.156 0.463 1.554 0.791 2.458 1.557

Ours 2.470 0.456 3.682 1.084 4.776 2.000 0.712 0.149 1.317 0.591 2.085 1.176

Table 1. Comparison among competitive denoising algorithms under the non-isotropic Gaussian noise. CD is multiplied by 104 and P2M
is multiplied by 104.

Our method outperforms other methods under the non-isotropic Gaussian noise and, generalizes much better to this novel
noise type than other deep-learning-based methods.

A.2. Uni-directional Noise

We only perturb the x-component of point clouds using Gaussian noise. The standard deviation is set to 1%, 2% and 3%
of the shape’s bounding sphere radius to generate point clouds at different noise levels. Below is the denoising result:

Test-set: PU 10K 1% 10K 2% 10K 3% 50K 1% 50K 2% 50K 3%
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

MRPCA [6] 1.712 0.646 2.564 0.767 3.237 1.063 0.446 0.056 0.841 0.271 1.879 1.070
GLR [9] 2.033 1.026 2.837 1.139 3.472 1.434 0.454 0.089 0.763 0.262 1.507 0.812

PCNet [7] 1.530 0.432 3.466 1.360 5.638 2.914 0.690 0.201 1.005 0.370 1.546 0.830
DMR [5] 4.350 1.674 4.581 1.830 5.015 2.169 1.032 0.372 1.181 0.488 1.585 0.864

Ours 1.442 0.279 2.412 0.543 3.391 1.108 0.486 0.063 0.780 0.235 1.486 0.799

Table 2. Comparison among competitive denoising algorithms under the uni-directional noise. CD is multiplied by 104 and P2M is
multiplied by 104.

Our method outperforms other methods under uni-directional noise and, generalizes much better to this novel noise type
than other deep-learning-based methods.

A.3. Laplace Noise

We perturb point clouds using Laplace noise. The scale of Laplace noise is set to 1%, 2% and 3% of the shape’s bounding
sphere radius to generate point clouds at different noise levels. Below is the denoising result:

Test-set: PU 10K 1% 10K 2% 10K 3% 50K 1% 50K 2% 50K 3%
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

MRPCA [6] 2.950 0.724 4.216 1.428 7.951 4.441 0.816 0.203 4.047 2.827 11.629 9.535
GLR [9] 3.223 1.121 4.751 2.090 7.977 4.773 0.962 0.374 3.269 2.325 8.675 7.162

PCNet [7] 4.616 1.940 11.082 7.218 20.981 15.922 1.190 0.458 2.854 1.868 7.555 6.020
DMR [5] 4.600 1.811 5.441 2.469 6.918 3.714 1.243 0.537 1.881 1.077 3.609 2.634

Ours 2.915 0.674 4.601 1.799 6.332 3.271 0.823 0.231 1.658 0.869 2.728 1.681

Table 3. Comparison among competitive denoising algorithms under Laplace noise. CD is multiplied by 104 and P2M is multiplied by
104.

Our method outperforms other methods under Laplace noise and, generalizes much better to this novel noise type than
other deep-learning-based methods.



A.4. Uniform Noise

We use the uniform distribution on a 3D ball with radius s to generate noise:

p(x; s) =

{
3

4πs3 ‖x‖2 ≤ s

0 Otherwise
. (2)

We set the radius s to 1%, 2% and 3% of the shape’s bounding sphere radius to generate point clouds at different noise levels.
Below is the denoising result:

Test-set: PU 10K 1% 10K 2% 10K 3% 50K 1% 50K 2% 50K 3%
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

MRPCA [6] 1.555 0.633 2.754 0.684 3.229 0.765 0.502 0.044 0.660 0.092 1.016 0.307
GLR [9] 1.850 1.015 2.948 1.052 3.400 1.109 0.485 0.071 0.656 0.132 0.903 0.293

PCNet [7] 1.205 0.337 3.378 1.018 5.044 1.995 0.806 0.228 1.064 0.358 1.218 0.451
DMR [5] 4.307 1.640 4.445 1.693 4.685 1.857 1.064 0.391 1.159 0.464 1.287 0.572

Ours 1.277 0.248 2.467 0.418 3.079 0.654 0.506 0.047 0.690 0.129 0.917 0.282

Table 4. Comparison among competitive denoising algorithms under the uniform noise. CD is multiplied by 104 and P2M is multiplied by
104.

In this setting, our method outperforms other deep-learning-based methods and is on par with the two optimization-based
methods.

It worth noting that in Analysis section, we assume the noise distribution is uni-modal and its mode is 0, but the uniform
noise does not satisfy the assumptions. Thus, this experiment demonstrates that our model is effective to a broader family of
noise beyond the assumptions.

A.5. Discrete Noise

We perturb point clouds using the following noise model:

p(x; s) =


0.1 x = (±s, 0, 0) or (0,±s, 0) or (0, 0,±s)
0.4 x = (0, 0, 0)

0 Otherwise
, (3)

where s controls the scale of noise. We set the scale parameter s to 1%, 2% and 3% of the shape’s bounding sphere radius to
generate point clouds at different noise levels. Below is the denoising result:

Test-set: PU 10K 1% 10K 2% 10K 3% 50K 1% 50K 2% 50K 3%
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

MRPCA [6] 1.522 0.629 2.353 0.674 2.607 0.743 0.404 0.044 0.488 0.074 0.681 0.207
GLR [9] 1.838 1.014 2.665 1.047 2.952 1.116 0.413 0.072 0.550 0.138 0.786 0.307

PCNet [7] 1.177 0.307 2.870 0.871 4.028 1.674 0.669 0.204 0.857 0.310 0.986 0.385
DMR [5] 4.288 1.625 4.388 1.668 4.566 1.785 1.039 0.379 1.151 0.461 1.246 0.540

Ours 1.249 0.251 2.177 0.416 2.653 0.653 0.449 0.048 0.615 0.136 0.812 0.277

Table 5. Comparison among competitive denoising algorithms under the uni-directional noise. CD is multiplied by 104 and P2M is
multiplied by 104.

Our method outperforms other deep-learning-based methods but does not outperform optimization-based methods when
the point cloud is denser. However, the performance gap between our method and the optimization-based methods is generally
not large.

In Analysis section, we assume the noise distribution is continuous. This experiment using discrete noise models indicates
that our model is effective to a broader family of noise beyond the assumptions.



B. Additional Results and Analysis of Ablation Studies
In Experiment section, we present ablation studies to evaluate the contribution of following main designs of our method:

(1) score-based denoising algorithm, (2) neighborhood-covering training objective, and (3) ensemble score function.
Following are the complete version of Table 3 in the paper and visual results:

Dataset: PU 10K, 1% 10K, 2% 10K, 3% 50K, 1% 50K, 2% 50K, 3%
Ablation CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

(1) 3.237 0.994 5.241 2.258 7.471 4.049 1.487 0.749 2.793 1.882 4.578 3.425
(1) + iter. 3.237* 0.994* 5.241* 2.258* 6.073 2.953 1.487* 0.738 2.270 1.378 2.884 1.930
(2) 4.726 2.188 5.740 2.748 5.976 3.036 1.347 0.598 1.826 0.985 2.319 1.395
(3) 2.522 0.471 4.021 1.280 6.872 3.497 0.768 0.178 1.585 0.803 4.188 2.971

Full 2.521 0.463 3.686 1.074 4.708 1.942 0.716 0.150 1.288 0.566 1.928 1.041

Table 6. Comparison of the unsupervised adaptation of our method, TotalDn[4], and optimization-based methods under simulated LiDAR
noise. CD is multiplied by 104 and P2M is multiplied by 104. (*) The best performance is achieved after running for only 1 iteration.

(1) (1) + iter. (2) (3) Full Model Clean

Figure 1. Visual results of ablation studies. The resolution and noise level are 50K and 3%.

As shown above, all the main component contributes positively to the performance.
Specifically, the score-based denoising algorithm (1) is shown superior to displacement-based methods widely employed

in previous works [7, 4]. It leads to less outliers as shown in the figure. This is because for displacement-based methods, both
the direction and magnitude of displacements should be accurate enough in order to achieve good quality. If the magnitude
of displacement is over-estimated, the point will overreach the clean surface. Otherwise if the magnitude of displacement is
under-estimated, the point will still be far away from the clean surface. In contrast, score-based methods only require the
direction of score to be accurate because it iteratively moves points towards the surface at decaying step sizes. When the
score is under-estimated, more than one step of updates will eventually move the point closer to the surface. When the score
is over-estimated, the decaying step size will prevent over-denoising.

The neighborhood-covering training objective (2) not only train the network to predict scores on the input noisy points but
also the neighborhood of points. This is crucial to score-based denoising because during gradient-ascent, points move around
and their positions change. This relies on scores defined on positions other than their original positions. It can be seen in the
figure that with such training objective, the denoised point cloud is smoother with details preserved better.

The ensemble score function (3) improves the robustness of the denoiser especially in high noise level cases. In high
noise level cases, an individual local score function might be less accurate because it is far away from the clean surface. By
considering more than 1 local score functions, the estimated score will be more reliable.

C. Unsupervised Learning
We adapt the unsupervised training objective in [4] to train an unsupervised version of our model:

Lunsup =
1

N

N∑
i=1

Exj∼NN(xi)

[∥∥Exj∼NN(xi,X) [xj − xi]− Si(xj)
∥∥2
2

]
. (4)

Except for the objective function, the training setting is identical to the supervised learning. We compare this unsupervised
adaptation to the unsupervised-learning-based denoising model TotalDn [4] using both Gaussian noise and simulated LiDAR



noise. We also compare them to optimization-based denoising methods because optimization-based methods do not rely on
data. The results are as follows:

Test-set: PU 10K 1% 10K 2% 10K 3% 50K 1% 50K 2% 50K 3%
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Bilateral [2] 3.646 1.342 5.007 2.018 6.998 3.557 0.877 0.234 2.376 1.389 6.304 4.730
Jet [1] 2.712 0.613 4.155 1.347 6.262 2.921 0.851 0.207 2.432 1.403 5.788 4.267
MRPCA [6] 2.972 0.922 3.728 1.117 5.009 1.963 0.669 0.099 2.008 1.033 5.775 4.081
GLR [9] 2.959 1.052 3.773 1.306 4.909 2.114 0.696 0.161 1.587 0.830 3.839 2.707

TotalDn [4] 3.390 0.826 7.251 3.485 13.385 8.740 1.024 0.314 2.722 1.567 7.474 5.729
Ours (Unsup.) 3.107 0.888 4.675 1.829 7.225 3.762 0.918 0.265 2.439 1.411 5.303 3.841

Table 7. Comparison of the unsupervised adaptation of our method, TotalDn[4], and optimization-based methods under Gaussian noise.
CD is multiplied by 104 and P2M is multiplied by 104.

Bilateral [3] Jet [1] MRPCA [6] GLR [9] TotalDn [4] Ours(Unsup.)

CD 3.279 3.385 2.886 2.663 4.090 3.420
P2M 2.215 2.319 1.933 1.920 2.869 2.331

Table 8. Comparison of the unsupervised adaptation of our method, TotalDn[4], and optimization-based methods under simulated LiDAR
noise. CD is multiplied by 104 and P2M is multiplied by 104.

The unsupervised adaptation of our method outperforms TotalDn[4]. However, both unsupervised-learning-based methods
do not perform better than optimization-based methods.

D. Hyper-parameters and Implementation Details
Please find the code and other details at: https://github.com/luost26/score-denoise.

https://github.com/luost26/score-denoise


E. Additional Visual Results
E.1. Real-World Datasets

Figure 2. Paris- rue- Madame [8]

Figure 3. Paris- rue- Madame [8]



E.2. Synthetic Datasets

Figure 4. Gaussian 1%.

Figure 5. Gaussian 2%.



Figure 6. Gaussian 3%.

Figure 7. Simulated LiDAR noise.



Figure 8. Uniform noise 2%.

Figure 9. Laplace noise 2%.
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