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A. Alternative Formulation

Our linear program can also be recast by a change of variables and setting ↵ = Dg. In this case, the elements of ↵
correspond to differences between adjoint pixels. This program can be written as:

min k↵k1

s.t.
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where D+ is the pseudo-inverse of D and U2 is related to the left singular vectors of D. More precisely, letting D = U⇥V T

denote the singular value decomposition of D, U2 is the submatrix that corresponds to the columns of U for which ⇥j is
zero. The linearity constraint ensures that the differences between the adjoint pixels is proper. Derivation of the alternative
formulation follows from Theorem 1 in [3] and is omitted.

This formulation can be expressed in the standard augmented form, i.e. minAx=b,x�0 cTx, by writing x =
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where y = 1
n

Pn
i=1 f̃ (x̃i) x̃i and m = 2p1p2 � p1 � p2. The � coefficient in the original formulation can be obtained by

setting � = D+ (↵+ � ↵�).

B. Proof of Theorem 1

Our proof depends on the following lemma.

Lemma 1. For L �
p
2kD+k1 log (p1p2/✏) /n, �⇤

is in the feasibility set with probability 1� ✏, that is
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Proof. For ease of notation, let G = D+E
h
1
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i
, and note that G = D+⌃�⇤. Furthermore, let zi =

f̃ (x̃i)D+x̃i. We also assume that the images have been rescaled so that the maximum value of x̃i is 1 (without rescaling, the



maximum would be given as the largest intensity, i.e. 255). Since, the function values are also in the range given by [-2,2], we
can bound |zi,j |, that is
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The proof follows by applying the McDiarmid’s inequality [9] for each row of the difference and then taking the supremum
over the terms. By application of McDiarmid’s inequality, we have that
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Let L =
p
2kD+k1 log (p1p2/2✏) /n. Then, taking a union bound over all variables, we have
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Now note that that the feasibility set for any L
0 � L contains that of L and thus �⇤ is automatically included.

We now present the proof of the theorem. Note that the technique is based on the Confidence Set approach by [2]. In the
proof, we use � to refer to vec(�) for ease of presentation.

Proof. First, let the high probability set for which Lemma 2 holds by A. All of the following statements hold true for A.
We let � = D (�̂ � �⇤) . We know that kD�̂k1  kD�⇤k1 since both are in the feasibility set, as stated in Lemma 2. Let
↵⇤ = D�⇤, ↵̂ = D�̂ and define S = {j : ↵⇤

j 6= 0}, and the complement of S as SC . By assumption of the Theorem, we have
that the cardinality of S is s, i.e. |S| = s. Now let �S as the elements of � in S. Then, using the above statement, one can
show that k�Sk1 � k�SCk1. Note,

k↵̂k1 = k↵⇤ +�k1
= k↵⇤ +�Sk1 + k�SCk1
� k↵⇤k1 � k�Sk1 + k�SCk1
� k↵̂k1 � k�Sk1 + k�SCk1 ,

and k�Sk1 � k�SCk1 follows immediately. Furthermore
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where the last line uses the previous result.
Additionally, note that

�TD+⌃D+�  k�k1kD+⌃D+�k1
 2Lk�k1,

where the first inequality follows by Holder’s inequality and the second follows from Lemma 2 and the fact that both �̂ and �⇤

are in the feasibility set for L =
p
2kD+k1 log (p1p2/✏) /n. We further bound the right hand side of the inequality by using

the previous result, which gives
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Next, we bound k�k2 by combining the previous results. Now, by assumption of the Theorem, we have that
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Dividing both sides by k�k2, we obtain that
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Finally, we note that
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where D is the smallest singular value of D that is positive. This follows from the fact that D has only one zero right singular
value, whose eigenvector is given by a vector of ones multiplied by 1/

p
p1p2. Letting m = (p1p2)�1
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concludes the proof.

C. Proof of Lemma 1

Proof. Let
h(g) = Ex⇠F+x0

h�
f(x)� f(x0)� vec(g)T vec(x0 � x)

�2i
.

Note that h(g) is quadratic and convex in g. Taking the derivative with respect to vec(g), and setting it to zero we obtain
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where g⇤ is the minimizer. After reorganizing the terms and setting z = x� x0, we get

Ez⇠F [vec(z) (f(x0 + z)� f(x0))] = Ez⇠F

⇥
vec(z) vec(z)T vec(g⇤)

⇤
= ⌃ vec(g⇤),

where we use that ⌃ = Cov(vec(z)) in the last equation. The result follows trivially.

D. Equivalency of LEG-TV with Empirical LEG if L = 0

Lemma 2. For the LEG-TV estimate with L = 0, if the one vector is an eigenvector of ⌃, i.e. ⌃1p1p2 = �1p1p2 , then the

solution is equal to the empirical LEG estimate up to a location shift. That is, �̃ = �̂ + a1p1p2 , for some a 2 R.

Before the proof, we note that the eigenvector condition on ⌃ can satisfied either with independent noise or our suggested
scheme in Section 4.2.

Proof. Note that, if L = 0, then we have that
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where we use the fact that the one vector is an eigenvector of ⌃�1 with eigenvalue ��1. Setting a = � c
� concludes the proof.



E. Examples with different perturbation scheme
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(a) Origin (x0)
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(b) Independent perturbations
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(c) New perturbation scheme

Figure 1: Demonstration of the new perturbation scheme on an example from the MNIST dataset. Noise sample of the new
scheme have a checkerboard pattern and the perturbation is uniformly distributed across the image.

F. Examples of explanations on MNIST

Figure 2: Examples of LEG, LEG-TV1, Vanilla Gradient[8], GradCam[7], LIME[6], KernelSHAP[5] and C-Shapely[1]
explanations for LeNet-5 on MNIST dataset[4]. Among them, Vanilla Gradient, GradCam are model-specific while the others
are model-agnostic. Red pixel represents positive saliency while blue pixel represents negative saliency. LEG, LEG-TV have
similar pattern as the model-specific method Vanilla Gradient. KernelSHAP takes each pixel as single feature in this case.

1Implementation details of LEG-TV: sample size is 20k, noise level equals 0.01 and L = 0.2, range of pixel intensity is reduced by 20% to satisfy the
normality assumption of the perturbations.



G. Sensitivity Plots on MNIST dataset

Figure 3: Sensitivity results of LEG, LEG-TV, Vanilla Gradient(saliency), C-Shapley, LIME, GradCam and KernelSHAP with
different masking schemes on first 100 test images of MNIST dataset. (a),(b),(c),(d) stand for Distance-100, Distance-255,
Mean vector and Noise masking respectively. KernelSHAP performs worse with high-dimensional input space. LEG and
LEG-TV outperform within three out of four schemes and also achieve excellent performance on Noise Masking.

H. Sanity check of LEG-TV on VGG-19 model

Figure 4: LEG-TV estimates with whole path of cascading randomization on VGG-19.

I. Sanity check of LEG on VGG-19 model

Figure 5: LEG estimates with whole path of cascading randomization on VGG-19. The corresponding estimates after cascading
randomization are either noisy or nearly zero after two or three perturbations and show that LEG without regularization is
sensitive to the underlying model as well.



J. More Examples on Sensitivity Analysis

Figure 6: More examples of sensitivity analysis on ImageNet shown by masking 10% of images based on different saliency
methods discussed in Section 6.2
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