
Supplemental Material: Active Universal Domain Adaptation

Xinhong Ma1,2, Junyu Gao1,2 and Changsheng Xu1,2,3

1 National Lab of Pattern Recognition (NLPR),
Institute of Automation, Chinese Academy of Sciences (CASIA)

2 School of Artificial Intelligence, University of Chinese Academy of Sciences (UCAS)
3 Peng Cheng Laboratory, Shenzhen, China

{xinhong.ma, junyu.gao, csxu}@nlpr.ia.ac.cn

Contents

1. Further Illustrations About Our Approach 1
1.1. The Proposed Active Learning Strategy

(CNTGE) . . . . . . . . . . . . . . . . . . 1
1.2. The Prototype Classifiers Gp . . . . . . . . . 1

2. Additional Experiments 2
2.1. comparing different DA methods equipped

with different AL strategies . . . . . . . . . 2
2.2. Comparing the Proposed Adversarial and

Diverse Curriculum Leaning (ADCL) with
Universal Domain Adaptation Methods . . 2

2.3. Prototype Classifiers or KNN Classifier for
Inferring Target Unknown Instances . . . . 3

2.4. Further Remarks . . . . . . . . . . . . . . . 3
2.5. More Performance Curves . . . . . . . . . . 5

3. Implementation Details 6
3.1. Network Architecture . . . . . . . . . . . . 6
3.2. Optimization . . . . . . . . . . . . . . . . . 6

1. Further Illustrations About Our Approach
1.1. The Proposed Active Learning Strategy

(CNTGE)

In CNTGE, we first run k-means to select transferable
and non-transferable target instances. Then, transferable
target instances are used to construct pseudo labeled dataset
while non-transferable target instances are leveraged for ac-
tive learning. Some details need further illustrations.
How to determine a suitable cluster number for k-
means? For each active learning round, we can only query
nr samples’ labels from an oracle. Therefore, we directly
set the cluster number of k-means as nr for a fair compari-
son with other active learning strategies, such as K-means,
Coreset and BADGE which also need run k-means algo-
rithm and their clustering numbers are set as nr too.

Prototypes from 𝐶𝑠 Prototypes from ഥ𝐶𝑡

Prototypes from 𝐶𝑠 Prototypes from ഥ𝐶𝑡

Add new category‘s prototypes 
once new categories are 

annotated by active learning𝒟𝑃𝐿𝑇 𝒟𝐿𝑇

Learning

Prototypes from 𝐶𝑠 Prototypes from ഥ𝐶𝑡

Prototypes from ഥ𝐶𝑡

Unknown Class Predictions

R=r-1

R=0

R=r

A Target 
Known Instance

Computing the 
cosine similarity vector 
normalized by softmax

Training Testing

ഥ𝐶𝑡

Figure 1. The training and testing of the prototype classifiers Gp.

How to compute gradient embeddings for non-
transferabel instances DNT and select nr informative in-
stances for active learning? Details refer to [1]. Here, we
simply summarize the whole process as the following steps:

• Computing the pseudo label vector of xi, i.e., ȳi =
Gc(Gf (xi)).

• Computing the gradient embedding

gxi =
∂Lc(ȳi, Gc(Gf (xi); θc))

∂θout
|θc=θt

c

where θout refers to parameters of the final (output)
layer of Gc and θtc denotes the classifier’s parameters
at time t.

• Running K-Means++ seeding algorithm on {gxi
|xi ∈

DNT } where the cluster number is set as nr.

About K-Means. For a fair comparison, K-means in our
CNTGE strategy follows [1], which utilizes cosine distance
to measure similarities without dimension reduction.

1.2. The Prototype Classifiers Gp

The prototype classifiers Gp is designed to classify target
“unknown” instances as target private classes, which main-
tains class representations (prototypes) in the target domain.



Table 1. Average class accuracy (%) on Office-Home, Office-31, VisDA and DomainNet for comparing different DA methods equipped
with different AL strategies. The best results are bolded.

AL Random Margin Coreset BADGE
Task Resnet UAN ADCL Resnet UAN ADCL Resnet UAN ADCL Resnet UAN ADCL

O
ffi

ce
-H

om
e

Ar→Cl 18.31 23.61 29.33 20.13 25.75 29.49 21.17 24.96 26.94 20.66 26.56 30.53
Ar→Pr 32.34 38.09 60.05 31.32 36.38 58.49 37.50 38.04 56.77 34.80 39.62 58.44
Ar→Rw 31.40 33.04 48.32 31.55 30.93 51.36 35.36 30.90 48.89 29.33 32.92 49.79
Cl→Ar 26.27 27.73 47.27 30.67 29.84 44.79 29.99 29.29 44.29 28.46 29.00 44.59
Cl→Pr 26.27 32.85 56.53 32.85 32.85 56.35 36.19 32.12 52.94 40.31 32.81 58.63
Cl→Rw 31.71 31.80 47.20 31.79 30.48 47.73 36.73 30.02 48.50 31.58 30.67 48.00
Pr→Ar 25.70 35.25 52.78 26.02 35.22 50.11 29.03 34.95 51.47 28.46 35.57 54.68
Pr→Cl 17.25 26.94 29.25 17.80 26.96 30.02 19.63 27.67 28.00 18.34 29.28 29.91
Pr→Rw 31.03 37.41 58.68 32.20 37.14 60.89 34.60 37.97 59.10 29.54 38.95 61.01
Rw→Ar 26.24 32.85 50.11 27.89 34.81 49.26 29.79 35.32 50.17 24.47 36.60 51.79
Rw→Cl 17.25 27.54 25.01 19.56 28.33 22.73 19.59 29.45 22.68 18.58 30.34 25.64
Rw→Pr 32.09 43.84 61.77 34.96 42.24 61.06 35.44 42.55 58.99 35.71 43.99 62.28

AVG 26.32 32.58 47.19 28.06 32.58 46.86 30.42 32.77 45.73 28.35 33.86 47.94
Average Accuracy ResNet: 28.29 UAN: 32.95 ADCL (Ours): 47.33

O
ffi

ce
-3

1

A→D 84.68 67.33 85.23 80.81 57.59 83.75 84.85 68.14 86.18 83.73 61.82 84.45
A→W 83.72 65.01 84.22 85.95 62.48 82.11 84.77 65.71 86.10 86.77 64.82 86.16
D→A 59.37 55.69 64.90 64.74 58.00 66.31 63.58 57.71 66.33 64.59 58.09 68.77
D→W 84.00 77.31 91.35 85.12 71.02 91.27 86.45 74.36 92.76 85.78 70.88 91.34
W→A 59.53 53.63 62.84 60.24 54.97 61.55 64.08 55.91 65.21 61.78 53.38 65.74
W→D 82.76 68.39 86.33 81.35 59.28 86.32 84.07 70.74 88.17 81.11 62.74 86.59
AVG 75.67 64.56 79.15 76.37 60.56 78.55 77.97 65.43 80.79 77.29 61.96 80.51

Average Accuracy ResNet: 76.83 UAN: 63.13 ADCL (Ours): 79.75

VisDA 59.27 59.11 63.15 61.98 72.45 63.49 61.43 57.28 62.58 61.91 62.83 64.00
Average Accuracy ResNet: 61.15 UAN: 62.92 ADCL (Ours): 63.31

D
om

ai
nN

et

P→R 27.46 43.08 48.56 36.37 40.65 46.69 35.91 40.98 31.74 37.68 40.41 40.31
R→P 27.46 35.00 36.24 27.75 33.58 36.57 27.73 33.74 34.57 27.33 36.27 37.31
P→S 24.00 25.57 29.53 24.42 29.52 31.11 23.73 29.61 29.45 24.76 29.44 30.69
S→P 25.92 27.00 33.98 26.08 30.92 34.05 26.75 31.81 33.77 26.88 32.35 35.70
R→S 24.19 31.37 29.49 24.33 31.66 29.93 24.00 31.93 29.09 25.85 31.83 31.13
S→R 35.56 42.70 47.46 35.49 43.17 45.90 35.35 44.74 47.42 41.57 45.10 47.38
AVG 27.43 34.12 37.54 29.07 34.91 37.37 28.91 35.47 34.34 30.68 35.90 37.09

Average Accuracy ResNet: 29.02 UAN: 35.10 ADCL (Ours): 36.59

The training and testing mechanisms of Gp is shown in Fig-
ure 1. Before training, Gp contains no prototypes. Dur-
ing training, new prototypes will be dynamically added into
Gp, once an instance with target private classes is anno-
tated by active learning and its prototype is not stored in
Gp. The prototypes of the shared label set are learned on
DPLT and DLT while the prototypes of target private label
set are learned on DLT . All prototypes in Gp is optimized
by the classification loss Lp. Once the Gp is trained, only
prototypes beyond the source label set are used for inferring
target unknown instances.

2. Additional Experiments
2.1. comparing different DA methods equipped

with different AL strategies

In the main paper, we have already compared different
DA methods equipped with different AL strategies. Here,
we provide the complete results (Table 1) on all transfer

tasks in Office-Home, Office-31, VisDA and DomainNet
datasets.

2.2. Comparing the Proposed Adversarial and Di-
verse Curriculum Leaning (ADCL) with Uni-
versal Domain Adaptation Methods

Compared Methods. To further testify whether the pro-
posed adversarial and diverse curriculum leaning can ef-
fectively deal with the domain gap and semantic shift, we
conduct extensive experiments with representative univer-
sal domain adaptation (UniDA) methods, including two ad-
versarial alignments methods (UAN [4], CMU [2]) and a
neighborhood clustering method (DANCE [3]). The ADCL
model can be obtained by directly removing the active lean-
ing and joint training stages in AUAN. Under universal do-
main adaptation setting, a robust UniDA model requires to
classify target samples as any class in the source labels set
or mark them as “unknown” without any prior knowledge
on the target label set.



Evaluation Protocols. To evaluate the classification perfor-
mance of UniDA models, we follow [2] to report H-score
for comparisons. H-score is a harmonic mean of the in-
stance accuracy on common classes ac and accuracy on the
“unknown” class ac̄ as: h = 2 · ac·ac̄

ac+ac̄
. The evaluation met-

ric is high only when both the ac and ac̄ high, which empha-
sizes the importance of both abilities of UniDA methods.
Comparison against state-of-the-art universal domain
adaptation methods. As shown in Table 2, ADCL achieves
state-of-the-art results on all domain adaptation tasks of
Office-Home dataset. The average improvement of H-
scores is 8.62 %. It indicates that the proposed ADCL can
effectively deal with domain gap and semantic shift prob-
lems, helping active learning to select more informative in-
stances for annotations.
Comparison between UniDA models with different met-
rics trained with ADCL. In our ADCL algorithm, we uti-
lize the transfer score wt(x

t
i) to measure the transferability

of a target sample xt
i. Other metrics in some adversarial

alignment UniDA methods [4, 2] can also be used to re-
place the transfer score and perform adversarial and diverse
curriculum learning. To prove the generalization of the pro-
posed adversarial and diverse curriculum learning, we insert
adversarial and diverse curriculums into UAN [4]. Specif-
ically, based on the adversarial training loss in UAN [4],
we modify the adversarial loss by inserting the indicator
function 1w′

t(x
t
i)⩾wα(t) to select target samples for adver-

sarial alignment. Same as UAN [4], source domain are also
scored, by the score w′

s(x
s
i ) = −w′

t(x
s
i ). Meanwhile, the

loss Ldiv is applied to UAN. Note that we utilize the metric
w′

t in UAN, not the transfer score wt, to measure samples’
transferability. w′

t is defined as Eq (1):

w′
t(x

t
i) = d(x)−H(Gc(Gf (x

t
i)))/log(|Cs|) (1)

For comparison, we also adopt a variant of our ADCL
model named w/o two curriculums, which can be obtained
by removing ws(x

s
i ), indicator function 1wt(xt

i)⩾wα(t) and
loss Ldiv . The model w/o two curriculums still utilizes
the transfer score for final predictions. Results are shown
in Table 3. We can observe that the performance of two
base UniDA models (UAN and w/o two curriculums) is im-
proved by the proposed adversarial and diverse curriculum
learning, though they utilize different metrics to measure
the transferability of samples. The results indicate that the
proposed adversarial and diverse curriculum learning algo-
rithm can be applied to other adversarial alignment UniDA
methods, and it can help to further improve classification
performance. Besides, UAN outperforms w/o two curricu-
lums because w/o two curriculums utilizes the naive adver-
sarial loss for cross-domain alignment which cannot con-
strain the cross-modal alignment into the common label set.
Differently, UAN assigns weights to samples in the source
and target domain via w′

t, which can alleviate the negative

transfer. With the help of ADCL, UAN and w/o two cur-
riculums can effectively constrain the cross-modal align-
ment into the common label set and reduce the classifier’s
over-reliance so that the performance is improved by 4.77%
and 20.15% respectively. It is interesting that the perfor-
mance gain of w/o two curriculums is much larger than
that of UAN when w/o two curriculums and UAN are both
equipped with ADCL, due to the following two reasons. (1)
In UAN (w′

t) + ADCL, the adversarial training loss is de-
fined as Eq (2), which is a little different from the proposed
Ladv .

L
Universal
adv = Exs

i
∈DS

[
−w

′
t

(
x
s
i

)
· log(1 − Gd(Gf (x

s
i )))

]
+ Ext

i
∈DUT

[
w

′
t(x

t
i) · 1w′

t(x
t
i
)⩾wα(t) · log(Gd(Gf (x

t
i)))

]
,

(2)

where w′
t is not only used for adversarial curriculum but

also used for weighting each selected instance’s contri-
bution to the adversarial alignment, which may weaken
the cross-domain alignment among high confident samples
from the common label set. (2) The values of samples’ w′

t

are distributed widely and are not sensitive to different sam-
ples, which is harmful for sample selection in curriculum
learning.

2.3. Prototype Classifiers or KNN Classifier for In-
ferring Target Unknown Instances

To infer target unknown instances with limited data an-
notated by active learning, two kinds of classifiers can be
learned to achieve this goal, i.e. prototype classifiers and
KNN classifier. Therefore, we apply the prototype classi-
fiers or KNN classifier to the AUAN model, and compare
their classification performance in the target domain. Re-
sults are shown in Table 4. We can observe that the pro-
totype classifier performs similar to KNN classifier across
four datasets. KNN classifier has to store all labeled target
features which have to be updated once the model parame-
ters change. Differently, the prototype classifiers only store
prototypes for all target categories, which saves storage cost
and is robust to model parameters. Therefore, in our paper,
we apply prototype classifiers to AUAN for inferring labels
in C̃t.

2.4. Further Remarks

Performance on C̃t. To show the performance on the target
private classes, we also report the average class accuracy
among target private classes and the ratio of the identified
target private classes in C̃t in two tasks, i.e., Rw → Pr and
D → A. Results are shown in Figure 2. Our approach can
recognize more classes in C̃t and annotate more informative
instances for prototype classifiers learning than other AL
strategies.
Performance of varying target private classes C̃t. Follow-
ing [4], with the fixed |Cs ∪ Ct| and |Cs ∩ Ct|, we explore



Table 2. Comparison Against State-of-the-Art Universal Domain Adaptation Methods. We report H-score (%) on the Office-Home dataset.
The Best results are bolded.

Method Office-Home
A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P AVG

UAN 51.64 51.70 54.30 61.74 57.63 61.86 50.38 47.62 61.46 62.87 52.61 65.19 56.58
CMU 56.02 56.93 59.15 66.95 64.27 67.82 54.72 51.09 66.39 68.24 57.89 69.73 61.60

DANCE 59.74 68.17 75.61 61.74 62.17 71.17 66.23 58.41 70.16 67.14 58.74 72.01 65.94
ADCL 61.97 78.10 82.31 71.48 75.71 79.46 78.07 60.20 87.90 78.03 59.44 82.09 74.56

Table 3. Comparison between UniDA models (UAN and our proposed model) with different metrics (w′
t and wt) trained with Adversarial

and Diverse Curriculum Learning (ADCL). We report H-score (%) on the Office-Home dataset.

Different Metrics A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P AVG

UAN (w′
t) 51.64 51.70 54.30 61.74 57.63 61.86 50.38 47.62 61.46 62.87 52.61 65.19 56.58

UAN (w′
t) + ADCL 53.82 63.39 67.75 64.60 59.25 63.13 60.11 50.91 65.02 66.37 52.75 69.08 61.35↑4.77

w/o two curriculums (wt) 47.16 51.35 50.79 56.90 57.74 59.53 52.84 45.81 59.48 59.29 51.00 60.99 54.41
ADCL (wt) 61.97 78.10 82.31 71.48 75.71 79.46 78.07 60.20 87.90 78.03 59.44 82.09 74.56↑20.15
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Figure 2. The performance on C̃t. (a)(b) are the curves of the av-
erage class accuracy among C̃t (Acc). (c)(d) are ratios of the iden-
tified target private classes in C̃t.
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Figure 3. (a) Average class accuracy varying C̃t; (b) Curves of
average class accuracy.

the average class accuracy with the various sizes of target
private classes C̃t on task A2C of Office-Home dataset. As
shown in Figure 3(a), the proposed model outperforms all
competitors consistently with different C̃t.
Training speed and convergence. We explore the curve of
average class accuracy over 170 rounds of active learning
on task A2C of Office-Home dataset. The result is shown in

Figure 3(b), indicating that the training speed and conver-
gence of our model is the fastest.
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Figure 4. (a) (b): H-score with respect to α and w0; (c): The
curves of average class accuracy respect to β on the task Ar→Cl
of Office-Home dataset.

Selecting α and w0. α and w0 are two important hyper-
parameters which mainly take effects in the adversarial and
diverse curriculum learning. For simplicity, we utilize the
ADCL model, not the full AUAN model, to select suitable
α and w0. The classification performance of ADCL is eval-
uated on task Ar → Cl of Office-Home dataset under the
UniDA setting. We fix the α and w0 for other transfer tasks
across datasets. As shown in Figure 4(a), with α varying
in a reasonable range [0, 0.5], the H-score changes little,
which proves that the performance is not very sensitive to
the α. Since the H-score when α = 0.2 is the best, we
set α = 0.2 for all transfer tasks in our experiments. As
shown in Figure 4(b), we visualize the H-score with w0



Table 4. Comparing the classification performance of prototype
and KNN classifiers equipped with different active learning strate-
gies.

Random Badge Ours
Prototype KNN Prototype KNN Prototype KNN

O
ffi

ce
-H

om
e

Ar→Cl 29.33 28.61 30.53 29.29 36.51 35.84
Ar→Pr 60.05 61.26 58.44 58.49 67.96 67.82
Ar→Rw 48.32 47.94 49.79 49.28 61.02 59.18
Cl→Ar 47.27 46.75 44.59 44.90 53.75 52.25
Cl→Pr 56.53 57.71 58.63 58.29 65.82 65.82

Cl→Rw 47.20 47.22 48.00 47.34 61.88 60.13
Pr→Ar 52.78 51.92 54.68 53.42 54.26 52.74
Pr→Cl 29.25 28.85 29.91 29.67 39.11 37.54
Pr→Rw 58.68 57.59 61.01 61.45 69.76 67.11
Rw→Ar 50.11 50.99 51.79 51.47 55.03 52.89
Rw→Cl 25.01 24.65 25.64 25.98 36.55 34.75
Rw→Pr 61.77 62.29 62.28 61.64 69.24 69.15

AVG 47.19 47.15 47.94 47.60 55.91 54.60

Average Accuracy: Prototype: 50.35 KNN: 49.78

O
ffi

ce
-3

1

A→D 85.23 85.49 84.45 84.45 87.21 86.73
A→W 84.22 83.03 86.16 85.95 86.19 86.19
D→A 64.90 64.87 68.77 69.01 68.13 67.98
D→W 91.35 90.56 91.34 91.34 92.26 92.26
W→A 62.84 62.73 65.74 66.09 65.67 66.26
W→D 86.33 89.38 86.59 87.01 87.60 87.90
AVG 79.15 79.34 80.51 80.64 81.18 81.22

Average Accuracy: Prototype: 80.28 KNN: 80.40

V
is

D
A S→R 63.15 63.16 64.00 63.76 73.91 73.85

Average Accuracy: Prototype: 67.02 KNN: 66.92

D
om

ai
nN

et

P→R 48.56 48.99 40.31 40.31 54.00 54.59
R→P 36.24 37.26 37.31 37.30 38.12 38.44
P→S 29.53 30.99 30.69 31.94 31.55 33.76
S→P 33.98 35.35 35.70 35.83 36.71 37.55
R→S 29.49 30.76 31.13 31.79 32.35 33.36
S→R 47.46 50.27 47.38 47.41 48.77 49.18
AVG 37.54 38.94 37.09 37.43 40.25 41.15

Average Accuracy: Prototype: 38.29 KNN: 39.17

varying in [0.5, 1.5]. Since w0 can decide a target sam-
ple is predicted as a class in the source label set or a class in
the target private label set, it is very important to determine
a suitable value for w0. We can obtain that the H-score
when w0 = 1.0 is the best. Besides, due to the transfer
score wt(xti) ∈ [0, 2], setting w0 = 1.0 can equally di-
vide the value range of wt, which removes the classification
bias. That is, a target sample is equally predicted as known
classes or unknown classes. Therefore, we set w0 = 1.0 in
our experiments.
Selecting β. β is the margin to decide whether a cluster is
from known classes or not during active learning. If a clus-
ter satisfies wt(ui) > β, the cluster’s category is from the
shared common label set Cc and their samples are leveraged
to construct pseudo labeled target dataset DPLT . We inves-

tigate how to select suitable β on task Ar → Cl of Office-
Home dataset under the AUDA setting. As shown in Fig-
ure 4(c), with β varying in a reasonable range [1.1, 1.9],
the performance curves change little, which proves that the
performance is not very sensitive to the β. However, the av-
erage performance of β with high and low values seems a
little poor. When β = 1.5, the average performance seems
better. Therefore, we set β = 1.5 in our experiments.
Why the bottleneck layer in Gp does not share parame-
ters with that in Gd or Gc. In AUAN, Gd and Gc share a
bottleneck layer which embeds visual features extracted by
Gf into 256-dimensional features. Gp apply a new a bot-
tleneck layer to embed visual features extracted by Gf for
prototypes learning. Since classifier Gc overfit source do-
main, Gc easily classify target unknown instances as source
classes with high confidence, termed as over-reliance. The
Gc’s over-reliance is attributed to mode collapse of the
bottleneck layer which prefer learning patterns related to
source classes. Therefore, sharing the bottleneck layer with
Gp or Gc cannot help learn discriminative representations
for target unknown instances. We conduct experiments that
whether Gp shares parameters of bottleneck layer with Gd

or Gc. The results on Office-Home dataset are shown in
Figure 5. The single branch refers to the model where the
bottleneck layer in Gp shares parameters with that in Gd or
Gc. Two branch model refers to the proposed model where
the bottleneck layer in Gp does not share parameters with
that in Gd or Gc. We can observe that sharing parameters
(single branch) lead to significant performance drop, which
proves that the bottleneck layer in Gd or Gc cannot learn
well discriminative representations for target unknown in-
stances.
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Figure 5. Two branch (Ours) vs Single branch: Average Class Ac-
curacy on transfer tasks in Office-Home dataset.

2.5. More Performance Curves

In Figure 6, 7 and 8, we show full performance curves on
Office-Home, Office-31, VisDA and DomainNet datasets.
We fix the domain adaptation method as ADCL and vary the
active learning methods (seven prior work) for comparison.
The proposed CNTGE strategy is robust to domain gap and
semantic shift, and could select informative instances for
AUDA.



3. Implementation Details
In this section, we will introduce more details about net-

work architecture and optimization in our experiments.

3.1. Network Architecture

For simplicity, we define some notations about var-
ious layers in deep networks. Let fc-k denotes a
fully-connected with k-dimensional output. drop de-
notes dropout layer. relu and sigmoid represent two
kinds of activation functions. softmax represent the
softmax operation. GRL denotes gradient reverse layer.
bottleneck-256 denotes a fully-connected with 256-
dimensional output. Cosine Similarity denotes the
operation of calculating the cosine similarity between the
inputs and prototypes in the Gp.
Feature Extractor Gf . In our experiments, we apply
ResNet-50 as feature extractor. All source and target sam-
ples are fed into feature extractor to obtain visual features.
Domain Discriminator Gd. The Domain discrimina-
tor inputs visual features and outputs domain predictions,
i.e., visual features → bottleneck-256 → GRL →
fc-1024 → relu → drop → fc-1024 → relu →
drop→ fc-1→ sigmoid→domain predictions.
Classifier Gc. Classifier inputs visual features and gen-
erates label predictions in source label set, i.e., visual
features → bottleneck-256 → fc-k → softmax
→label predictions where k is the size of source label set.
Note that the bottleneck-256 in Gd and Gc share pa-
rameters.
Prototype Classifiers Gp. The prototype classifiers input
visual features and generates label predictions in target pri-
vate label set, i.e., visual features → bottleneck-256
→ Cosine Similarity → softmax →Unknown
Category Inference.

3.2. Optimization

• Batch Size: 36 for each domain

• Loss Weight of Ladv and Ldiv: 1.0

• Loss Weight of Lnc: 0.01

• Threshold w0: 1.0

• α = 0.2

• Learning Rate: 0.01

• Optimizer: The stochastic gradient decent with 0.9
momentum is used, and the learning rate is annealed
by µp = µ0

(1+α·p)β , where µ0 = 0.01, α = 10, and
β = 0.75. We set the learning rate for fine-tuned lay-
ers to be 0.1 times of that from scratch.

References
[1] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John

Langford, and Alekh Agarwal. Deep batch active learning by
diverse, uncertain gradient lower bounds. In ICLR, 2019.

[2] Bo Fu, Zhangjie Cao, Mingsheng Long, and Jianmin Wang.
Learning to detect open classes for universal domain adapta-
tion. In ECCV, pages 567–583, 2020.

[3] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, and Kate
Saenko. Universal domain adaptation through self-
supervision. In NeurIPS, pages 16282–16292, 2020.

[4] Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin Wang,
and Michael I Jordan. Universal domain adaptation. In CVPR,
pages 2720–2729, 2019.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Annotation round

0.15

0.20

0.25

0.30

0.35

Ac
cu

ra
cy

Random
Entropy
Confidence
Margin
Coreset
K-means
BADGE
Ours

(a) Ar → Cl
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(b) Ar → Pr
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(c) Ar → Rw
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(d) Cl → Ar
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(e) Cl → Pr
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(f) Cl → Rw
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(g) Pr → Ar
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(h) Pr → Cl
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(i) Pr → Rw
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(j) Rw → Ar
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(k) Rw → Cl
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(l) Rw → Pr

Figure 6. The curves of average class accuracy with different annotation round on Office-Home dataset. Best viewed in high resolution.
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(a) A → D
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(b) A → W
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(c) D → A
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(d) D → W
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(e) W → A
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(f) W → D
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(g) S → R

Figure 7. The curves of average class accuracy with different annotation round on Office-31 and VisDA datasets. Best viewed in high
resolution.
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(a) P → R
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(b) P → S
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(c) R → P
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(d) R → S
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(e) S → P
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Figure 8. The curves of average class accuracy with different annotation round on DomainNet datasets. Best viewed in high resolution.


