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1. Further Illustrations About Our Approach

1.1. The Proposed Active Learning Strategy
(CNTGE)

In CNTGE, we first run k-means to select transferable

and non-transferable target instances. Then, transferable
target instances are used to construct pseudo labeled dataset
while non-transferable target instances are leveraged for ac-
tive learning. Some details need further illustrations.
How to determine a suitable cluster number for k-
means? For each active learning round, we can only query
n, samples’ labels from an oracle. Therefore, we directly
set the cluster number of k-means as n,. for a fair compari-
son with other active learning strategies, such as K-means,
Coreset and BADGE which also need run k-means algo-
rithm and their clustering numbers are set as n,. too.
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Figure 1. The training and testing of the prototype classifiers G.

How to compute gradient embeddings for non-
transferabel instances Dy and select n,. informative in-
stances for active learning? Details refer to [1]. Here, we
simply summarize the whole process as the following steps:

e Computing the pseudo label vector of x;, i.e., y; =
Ge(Gr(x0))-
e Computing the gradient embedding
. = aLC(S’iaGC(Gf(Xi)§96)) lo.—6t
' 000t e
where 6,,,; refers to parameters of the final (output)

layer of G. and 6’ denotes the classifier’s parameters
at time ¢.

e Running K-Means++ seeding algorithm on {gx,|x; €
Dy} where the cluster number is set as n..

About K-Means. For a fair comparison, K-means in our
CNTGE strategy follows [1], which utilizes cosine distance
to measure similarities without dimension reduction.

1.2. The Prototype Classifiers G,

The prototype classifiers G, is designed to classify target
“unknown” instances as target private classes, which main-
tains class representations (prototypes) in the target domain.



Table 1. Average class accuracy (%) on Office-Home, Office-31, VisDA and DomainNet for comparing different DA methods equipped

with different AL strategies. The best results are bolded.

AL Random Margin Coreset BADGE
Task | Resnet UAN ADCL | Resnet UAN ADCL | Resnet UAN ADCL | Resnet UAN ADCL
Ar—Cl | 1831 23.61 2933 | 20.13 2575 2949 | 21.17 2496 2694 | 20.66 2656 30.53
Ar—Pr | 3234 38.09 60.05 | 31.32 3638 5849 | 37.50 38.04 56.77 | 34.80 39.62 58.44
Ar—Rw | 31.40 33.04 4832 | 31.55 3093 51.36 | 3536 3090 48.89 | 29.33 3292 49.79
o Cl=Ar | 2627 27.73 47.27 | 30.67 29.84 44.79 | 2999 2929 44.29 | 2846 29.00 44.59
£ Cl—Pr | 2627 32.85 56.53 | 32.85 32.85 56.35 | 36.19 32.12 5294 | 4031 32.81 58.63
E Cl—-Rw | 31.71 31.80 47.20 | 31.79 3048 47.73 | 36.73 30.02 48.50 | 31.58 30.67 48.00
d Pr—Ar | 2570 3525 5278 | 26.02 3522 50.11 | 29.03 3495 5147 | 2846 3557 54.68
& Pr—Cl | 1725 2694 29.25 | 17.80 2696 30.02 | 19.63 27.67 28.00 | 18.34 2928 29.91
S Pr—Rw | 31.03 3741 58.68 | 3220 37.14 60.89 | 3460 3797 59.10 | 29.54 3895 61.01
Rw—Ar | 2624 3285 50.11 | 27.89 3481 49.26 | 29.79 3532 50.17 | 2447 36.60 51.79
Rw—Cl | 17.25 27.54 25.01 | 1956 2833 2273 | 19.59 2945 2268 | 18.58 30.34 25.64
Rw—Pr | 32.09 43.84 61.77 | 3496 4224 61.06 | 3544 4255 5899 | 35.71 43.99 62.28
AVG 26.32 3258 47.19 | 28.06 32.58 46.86 | 30.42 32777 45773 | 28.35 33.86 47.94
Average Accuracy ResNet: 28.29 UAN:32.95 ADCL (Ours): 47.33
A—D | 84.68 6733 8523 | 80.81 57.59 83.75 | 8485 68.14 86.18 | 83.73 61.82 8445
- A—-W | 8372 6501 84.22 | 8595 6248 82.11 | 8477 65.71 86.10 | 86.77 64.82 86.16
’3 D—A | 5937 5569 6490 | 6474 58.00 6631 | 63.58 57.71 6633 | 6459 58.09 68.77
g D—W | 8400 7731 9135 | 8512 71.02 91.27 | 8645 7436 92.76 | 8578 70.88 91.34
S W—A | 5953 5363 62.84 | 60.24 5497 61.55 | 64.08 5591 6521 | 61.78 53.38 65.74
W—D | 8276 68.39 86.33 | 81.35 59.28 86.32 | 84.07 70.74 88.17 | 81.11 62.74 86.59
AVG 75.67 64.56 79.15 | 7637 6056 7855 | 7797 6543 80.79 | 77.29 61.96 80.51
Average Accuracy ResNet: 76.83 UAN: 63.13 ADCL (Ours): 79.75
VisDA | 5927 59.11 63.15 | 61.98 7245 6349 | 6143 5728 62.58 | 6191 62.83 64.00
Average Accuracy ResNet: 61.15 UAN: 62.92 ADCL (Ours): 63.31
- PR 2746 43.08 48.56 | 36.37 40.65 46.69 | 3591 4098 31.74 | 37.68 40.41 40.31
2 R—P 2746 35.00 36.24 | 27.75 33.58 36.57 | 27.73 3374 34.57 | 27.33 36.27 37.31
s P-=S 24.00 2557 29.53 | 2442 2952 3111 | 23773 29.61 29.45 | 2476 29.44 30.69
T S—P 2592 27.00 3398 | 26.08 30.92 34.05 | 26.75 31.81 33.77 | 26.88 32.35 35.70
g R—S 24.19 3137 2949 | 2433 31.66 2993 | 2400 3193 29.09 | 25.85 31.83 31.13
A S—=R 35,56 4270 4746 | 3549 43.17 4590 | 3535 44774 4742 | 41.57 45.10 47.38
AVG 2743 3412 37.54 | 29.07 3491 37.37 | 2891 3547 3434 | 30.68 3590 37.09

Average Accuracy ResNet: 29.02 UAN: 35.10 ADCL (Ours): 36.59

The training and testing mechanisms of G, is shown in Fig-
ure 1. Before training, ), contains no prototypes. Dur-
ing training, new prototypes will be dynamically added into
G, once an instance with target private classes is anno-
tated by active learning and its prototype is not stored in
G,. The prototypes of the shared label set are learned on
Dprr and Dy while the prototypes of target private label
set are learned on Dy p. All prototypes in G, is optimized
by the classification loss L,. Once the G, is trained, only
prototypes beyond the source label set are used for inferring
target unknown instances.

2. Additional Experiments

2.1. comparing different DA methods equipped
with different AL strategies

In the main paper, we have already compared different
DA methods equipped with different AL strategies. Here,
we provide the complete results (Table 1) on all transfer

tasks in Office-Home, Office-31, VisDA and DomainNet
datasets.

2.2. Comparing the Proposed Adversarial and Di-
verse Curriculum Leaning (ADCL) with Uni-
versal Domain Adaptation Methods

Compared Methods. To further testify whether the pro-
posed adversarial and diverse curriculum leaning can ef-
fectively deal with the domain gap and semantic shift, we
conduct extensive experiments with representative univer-
sal domain adaptation (UniDA) methods, including two ad-
versarial alignments methods (UAN [4], CMU [2]) and a
neighborhood clustering method (DANCE [3]). The ADCL
model can be obtained by directly removing the active lean-
ing and joint training stages in AUAN. Under universal do-
main adaptation setting, a robust UniDA model requires to
classify target samples as any class in the source labels set
or mark them as “unknown” without any prior knowledge
on the target label set.



Evaluation Protocols. To evaluate the classification perfor-
mance of UniDA models, we follow [2] to report H-score
for comparisons. H-score is a harmonic mean of the in-
stance accuracy on common classes a. and accuracy on the
“unknown” class az as: h = 2 - ﬁ The evaluation met-
ric is high only when both the a, and a; high, which empha-
sizes the importance of both abilities of UniDA methods.
Comparison against state-of-the-art universal domain
adaptation methods. As shown in Table 2, ADCL achieves
state-of-the-art results on all domain adaptation tasks of
Office-Home dataset. The average improvement of H-
scores is 8.62 %. It indicates that the proposed ADCL can
effectively deal with domain gap and semantic shift prob-
lems, helping active learning to select more informative in-
stances for annotations.

Comparison between UniDA models with different met-
rics trained with ADCL. In our ADCL algorithm, we uti-
lize the transfer score w;(x!) to measure the transferability
of a target sample x!. Other metrics in some adversarial
alignment UniDA methods [4, 2] can also be used to re-
place the transfer score and perform adversarial and diverse
curriculum learning. To prove the generalization of the pro-
posed adversarial and diverse curriculum learning, we insert
adversarial and diverse curriculums into UAN [4]. Specif-
ically, based on the adversarial training loss in UAN [4],
we modify the adversarial loss by inserting the indicator
function Loy (xt) > wa(t) 1O select target samples for adver-
sarial alignment. Same as UAN [4], source domain are also
scored, by the score w’,(x) = —wj(x{). Meanwhile, the
loss Ly, is applied to UAN. Note that we utilize the metric
wj in UAN, not the transfer score wy, to measure samples’
transferability. w; is defined as Eq (1):

wy(x}) = d(w) — H(Ge(Gy(x;)))/log(ICs]) (1)

For comparison, we also adopt a variant of our ADCL
model named w/o two curriculums, which can be obtained
by removing w,(x$), indicator function 1, (x!) >w (t) and
loss Lg;,. The model w/o two curriculums still utilizes
the transfer score for final predictions. Results are shown
in Table 3. We can observe that the performance of two
base UniDA models (UAN and w/o two curriculums) is im-
proved by the proposed adversarial and diverse curriculum
learning, though they utilize different metrics to measure
the transferability of samples. The results indicate that the
proposed adversarial and diverse curriculum learning algo-
rithm can be applied to other adversarial alignment UniDA
methods, and it can help to further improve classification
performance. Besides, UAN outperforms w/o two curricu-
lums because w/o two curriculums utilizes the naive adver-
sarial loss for cross-domain alignment which cannot con-
strain the cross-modal alignment into the common label set.
Differently, UAN assigns weights to samples in the source
and target domain via w}, which can alleviate the negative

transfer. With the help of ADCL, UAN and w/o two cur-
riculums can effectively constrain the cross-modal align-
ment into the common label set and reduce the classifier’s
over-reliance so that the performance is improved by 4.77%
and 20.15% respectively. It is interesting that the perfor-
mance gain of w/o two curriculums is much larger than
that of UAN when w/o two curriculums and UAN are both
equipped with ADCL, due to the following two reasons. (1)
In UAN (w;) + ADCL, the adversarial training loss is de-
fined as Eq (2), which is a little different from the proposed
Lad'u-

LUeerel = Bue p [—w) (%) - log(1 — Ga(Gy (x))]

’ t t
+ ]ExireDUT [wt(xi) ’ lqlxé(x::‘);'wa(t) 'IOg(Gd(Gf(Xi)))} )

2

where w; is not only used for adversarial curriculum but
also used for weighting each selected instance’s contri-
bution to the adversarial alignment, which may weaken
the cross-domain alignment among high confident samples
from the common label set. (2) The values of samples’ w;
are distributed widely and are not sensitive to different sam-
ples, which is harmful for sample selection in curriculum
learning.

2.3. Prototype Classifiers or KNN Classifier for In-
ferring Target Unknown Instances

To infer target unknown instances with limited data an-
notated by active learning, two kinds of classifiers can be
learned to achieve this goal, i.e. prototype classifiers and
KNN classifier. Therefore, we apply the prototype classi-
fiers or KNN classifier to the AUAN model, and compare
their classification performance in the target domain. Re-
sults are shown in Table 4. We can observe that the pro-
totype classifier performs similar to KNN classifier across
four datasets. KNN classifier has to store all labeled target
features which have to be updated once the model parame-
ters change. Differently, the prototype classifiers only store
prototypes for all target categories, which saves storage cost
and is robust to model parameters. Therefore, in our paper,
we apply prototype classifiers to AUAN for inferring labels
in Ct.

2.4. Further Remarks

Performance on C,. To show the performance on the target
private classes, we also report the average class accuracy
among target private classes and the ratio of the identified
target private classes in (ft in two tasks, i.e., Rw — Pr and
D — A. Results are shown in Figure 2. Our approach can
recognize more classes in C; and annotate more informative
instances for prototype classifiers learning than other AL
strategies.

Performance of varying target private classes C;. Follow-
ing [4], with the fixed |Cs U C;| and |Cs N Cy|, we explore



Table 2. Comparison Against State-of-the-Art Universal Domain Adaptation Methods. We report H-score (%) on the Office-Home dataset.
The Best results are bolded.

Method Office-Home
A2C A2P A2R C2A (C2P C(C2R P2A P2C P2R  R2A R2C R2P AVG
UAN 51.64 5170 5430 61.74 5763 61.86 5038 47.62 6146 6287 52.61 6519 56.58
CMU | 56.02 5693 59.15 6695 6427 67.82 5472 51.09 6639 6824 57.89 69.73 61.60
DANCE | 59.74 68.17 7561 6174 62.17 71.17 6623 5841 70.16 67.14 5874 7201 6594
ADCL | 6197 78.10 8231 7148 7571 7946 78.07 60.20 8790 78.03 59.44 82.09 74.56

Table 3. Comparison between UniDA models (UAN and our proposed model) with different metrics (w; and w) trained with Adversarial

and Diverse Curriculum Learning (ADCL). We report H-score (%) on the Office-Home dataset.

Different Metrics A2C A2P A2R C2A C2P C2R P2A P2C P2R R2A R2C R2P AVG
UAN (w}) 51.64 51.70 54.30 61.74 57.63 61.86 50.38 47.62 61.46 62.87 52.61 65.19 56.58
UAN (w)) + ADCL  53.82 63.39 67.75 64.60 59.25 63.13 60.11 50.91 65.02 66.37 52.75 69.08 61.35T477

w/o two curriculums (w;) 47.16 51.35 50.79 56.90 57.74 59.53 52.84 45.81 59.48 59.29 51.00 60.99

ADCL (w;)

54.41
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Figure 3. (a) Average class accuracy varying Cy; (b) Curves of
average class accuracy.

the average class accuracy with the various sizes of target
private classes C; on task A2C of Office-Home dataset. As
shown in Figure 3(a), the proposed model outperforms all
competitors consistently with different Cr.

Training speed and convergence. We explore the curve of
average class accuracy over 170 rounds of active learning
on task A2C of Office-Home dataset. The result is shown in

Figure 3(b), indicating that the training speed and conver-
gence of our model is the fastest.

BLI761.35 61.33 61.26 60,6

60,47 61856197

60.55 50,85

H-score (%)
w s
H-score (%)
w s

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05 05 06 07 08 09 1.0 11 12 13 14 15

a Wo
(a) H-score w.r.t o (b) H-score w.r.t wo

Accuracy

012345678 910111213141516
Annotation round

(c) The curves of average class accuracy w.r.t 3

Figure 4. (a) (b): H-score with respect to v and wp; (c¢): The
curves of average class accuracy respect to S on the task Ar—Cl
of Office-Home dataset.

Selecting o and wy. « and wy are two important hyper-
parameters which mainly take effects in the adversarial and
diverse curriculum learning. For simplicity, we utilize the
ADCL model, not the full AUAN model, to select suitable
o and wyg. The classification performance of ADCL is eval-
uated on task Ar — Cl of Office-Home dataset under the
UniDA setting. We fix the « and wy for other transfer tasks
across datasets. As shown in Figure 4(a), with o varying
in a reasonable range [0, 0.5], the H-score changes little,
which proves that the performance is not very sensitive to
the «. Since the H-score when v = 0.2 is the best, we
set « = 0.2 for all transfer tasks in our experiments. As
shown in Figure 4(b), we visualize the H-score with wyg



Table 4. Comparing the classification performance of prototype
and KNN classifiers equipped with different active learning strate-
gies.

Random Badge Ours
Prototype KNN Prototype KNN Prototype KNN

Ar—Cl 2933 2861 30.53 2929 3651 3584
Ar—Pr 60.05 6126 5844 5849 6796 67.82
Ar—Rw 4832 4794 4979 49.28 61.02 59.18
Cl—Ar 4727 4675 4459 4490 5375 5225

o Cl=Pr 5653 5771 58.63 5829 6582 65.82
g Cl—-Rw 4720 4722 48.00 4734 61.88 60.13
T Pr—Ar 5278 5192 5468 5342 5426 5274
}:‘3 Pr—Cl 2925 28.85 2991 29.67 39.11 3754
5 Pr—Rw 5868 57.59 6101 6145 69.76 67.11
Rw—Ar 50.11 5099 51.79 5147 55.03 52.89
Rw—Cl 2501 2465 25.64 2598 3655 34.75
Rw—Pr 61.77 6229 6228 61.64 6924 69.15
AVG 4719 47.15 4794 4760 5591 54.60

KNN: 49.78

Average Accuracy:  Prototype: 50.35

A—D 8523 8549 8445 8445 8721 86.73
A—W 8422 83.03 86.16 8595 86.19 86.19
D—A 6490 6487 68.77 69.01 68.13 6798

?'3 D—W 9135 9056 9134 9134 9226 9226
E W—=A 6284 6273 6574 66.09 6567 66.26
© WD 8633 89.38 86.59 87.01 87.60 87.90
AVG 79.15 7934 80.51 80.64 81.18 81.22
Average Accuracy: Prototype: 80.28 KNN: 80.40
é S—R 63.15 63.16 64.00 63.76 7391 73.85
.‘>£ Average Accuracy:  Prototype: 67.02 KNN: 66.92
P—R 4856 4899 4031 4031 54.00 54.59
R—P 36.24 37.26 37.31 3730 38.12 3844
E P—S 29.53 3099 30.69 3194 3155 33.76
£ S—P 3398 3535 3570 35.83 36.71 37.55
g R—S 2949 30.76 31.13 31.79 3235 3336
A S—R 4746 5027 4738 4741 4877 49.18

AVG 37.54 3894 37.09 3743 4025 41.15
Prototype: 38.29  KNN: 39.17

Average Accuracy:

varying in [0.5, 1.5]. Since wy can decide a target sam-
ple is predicted as a class in the source label set or a class in
the target private label set, it is very important to determine
a suitable value for wg. We can obtain that the H-score
when wg = 1.0 is the best. Besides, due to the transfer
score wy(x}) € [0,2], setting wy = 1.0 can equally di-
vide the value range of w;, which removes the classification
bias. That is, a target sample is equally predicted as known
classes or unknown classes. Therefore, we set wy = 1.0 in
our experiments.

Selecting 8. [ is the margin to decide whether a cluster is
from known classes or not during active learning. If a clus-
ter satisfies w;(u;) > 3, the cluster’s category is from the
shared common label set C,. and their samples are leveraged
to construct pseudo labeled target dataset Dpy . We inves-

tigate how to select suitable 3 on task Ar — ClI of Office-
Home dataset under the AUDA setting. As shown in Fig-
ure 4(c), with 8 varying in a reasonable range [1.1, 1.9],
the performance curves change little, which proves that the
performance is not very sensitive to the 5. However, the av-
erage performance of 5 with high and low values seems a
little poor. When 5 = 1.5, the average performance seems
better. Therefore, we set S = 1.5 in our experiments.

Why the bottleneck layer in G, does not share parame-
ters with that in G, or GG.. In AUAN, (G4 and G, share a
bottleneck layer which embeds visual features extracted by
G into 256-dimensional features. G, apply a new a bot-
tleneck layer to embed visual features extracted by G ¢ for
prototypes learning. Since classifier G overfit source do-
main, G, easily classify target unknown instances as source
classes with high confidence, termed as over-reliance. The
G.’s over-reliance is attributed to mode collapse of the
bottleneck layer which prefer learning patterns related to
source classes. Therefore, sharing the bottleneck layer with
G, or G. cannot help learn discriminative representations
for target unknown instances. We conduct experiments that
whether G, shares parameters of bottleneck layer with G4
or GG.. The results on Office-Home dataset are shown in
Figure 5. The single branch refers to the model where the
bottleneck layer in G}, shares parameters with that in G4 or
G. Two branch model refers to the proposed model where
the bottleneck layer in G, does not share parameters with
that in G4 or G.. We can observe that sharing parameters
(single branch) lead to significant performance drop, which
proves that the bottleneck layer in G4 or G, cannot learn
well discriminative representations for target unknown in-
stances.

=== Ours
Em Single Branch

Accruacy (%)

Cltor Cltohw Prion Friol Priohe Rwior RwioCl
Transfer Tasks

Figure 5. Two branch (Ours) vs Single branch: Average Class Ac-
curacy on transfer tasks in Office-Home dataset.

2.5. More Performance Curves

In Figure 6, 7 and 8, we show full performance curves on
Office-Home, Office-31, VisDA and DomainNet datasets.
We fix the domain adaptation method as ADCL and vary the
active learning methods (seven prior work) for comparison.
The proposed CNTGE strategy is robust to domain gap and
semantic shift, and could select informative instances for
AUDA.



3. Implementation Details

In this section, we will introduce more details about net-
work architecture and optimization in our experiments.

3.1. Network Architecture

For simplicity, we define some notations about var-
ious layers in deep networks. Let fc-k denotes a
fully-connected with k-dimensional output. drop de-
notes dropout layer. relu and sigmoid represent two
kinds of activation functions. softmax represent the
softmax operation. GRL denotes gradient reverse layer.
bottleneck-256 denotes a fully-connected with 256-
dimensional output. Cosine Similarity denotes the
operation of calculating the cosine similarity between the
inputs and prototypes in the G/p.

Feature Extractor G;. In our experiments, we apply
ResNet-50 as feature extractor. All source and target sam-
ples are fed into feature extractor to obtain visual features.
Domain Discriminator ;. The Domain discrimina-
tor inputs visual features and outputs domain predictions,
i.e., visual features — bottleneck-256 — GRL —
fc-1024 — relu — drop — fc-1024 — relu —
drop — fc-1 — sigmoid —domain predictions.
Classifier GG.. Classifier inputs visual features and gen-
erates label predictions in source label set, ie., visual
features — bottleneck-256 — fc-k — softmax
—label predictions where k is the size of source label set.
Note that the bottleneck-256 in G4 and G, share pa-
rameters.

Prototype Classifiers G,. The prototype classifiers input
visual features and generates label predictions in target pri-
vate label set, i.e., visual features — bottleneck-256
— Cosine Similarity — softmax —Unknown
Category Inference.

3.2. Optimization

e Batch Size: 36 for each domain

e Loss Weight of L4, and Lg;,,: 1.0
e Loss Weight of L,,.: 0.01

e Threshold wy: 1.0

e =02

e Learning Rate: 0.01

e Optimizer: The stochastic gradient decent with 0.9
momentum is used, and the learning rate is annealed
by pp = #“_p)ﬁ, where 119 = 0.01, @ = 10, and
B = 0.75. We set the learning rate for fine-tuned lay-
ers to be 0.1 times of that from scratch.
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Figure 6. The curves of average class accuracy with different annotation round on Office-Home dataset. Best viewed in high resolution.
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Figure 7. The curves of average class accuracy with different annotation round on Office-31 and VisDA datasets. Best viewed in high
resolution.
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Figure 8. The curves of average class accuracy with different annotation round on DomainNet datasets. Best viewed in high resolution.
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