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1. Benchmark Dataset Introduction
Datasets derived from ImageNet [4]: miniImageNet [23] and tieredImageNet [17].
MiniImageNet contains 100 classes, each class has 600 images, all images are resized to 84×84. The classes are split into
three sets [16], 64 classes for training, 16 classes for few-shot validation, and 20 classes for few-shot testing. For each base
class, we only use the 600 images for network training (base train set), while another 300 images are provided in [6] to
build the base test set for conventional fully-supervised image classification evaluation. We use the classifier trained from
the large-scale base train set to classify all images in the base test set among all base classes and report the accuracy for
evaluation.
TieredImageNet is a hierarchical dataset and contains 608 leaf-level classes, which can be further categorized into 34 super-
classes. The class split is performed at super-class level, where 20 super-classes (351 leaf-classes) are used for training, 6
super-classes (97 leaf-classes) are used for few-shot validation, and 8 super-classes (160 leaf-classes) are used for few-shot
testing. During network training and evaluation, the classification is performed on the leaf-level classes.
Dataset derived from CIFAR100: CIFAR-FS [1] and FC100 [15] are two few-shot datasets created by adapting different
class-split protocols on CIFAR100. CIFAR100 contains 60K 32×32 RGB images from 100 classes and each class has 600
images. CIFAR-FS splits the classes by using 64 classes for training, 16 classes for few-shot validation, and 20 classes for
few-shot testing. FC100 adopt the hierarchical concept, similar to tieredImageNet, which categorized 100 leaf-classes into 20
super-classes. Then, 12 super-classes (60 leaf-classes) are used for training, 4 super-class (20 leaf-classes) are used for few-
shot validation, and 4 super-classes (20 leaf-classes) are used for few-shot testing. During network training and evaluation,
the classification is performed on the leaf-level classes.

During network training, we use the few-shot learning accuracy by performing prototype classification on the tasks sam-
pled from the few-shot validation set for model selection. During network evaluation, we follow [21] and samples 1000
few-shot tasks. Within each task, 15 samples for each class are selected as queries for classification evaluation. We report the
mean accuracy as well as the 95% confidence intervals.

2. Meta-Dataset
Meta-Dataset [22] is recently proposed for evaluating the performance of the few-shot learning algorithms on various

domains. The Meta-Dataset is a combinational dataset which consists of 10 commonly used vision dataset: ILSVRC [18],
omniglot [10], Aircraft [13], CU-Birds [24], DTD [3], Quickdraw [8], Fungi [19], VGG Flower [14], Traffic Signs [7], and
MSCOCO [12]. All classes in Traffic Sign and MSCOCO are used for either validation or testing. For the rest dataset, the
classes of all datasets are splited to training, validation, and testing. More detailed information and discussion could be found
in [22]. For evaluating PAL’s performance on meta-dataset, we trained ResNet18 model with PAL scheme on ILSVRC’s
training split only and resized all images to 128× 128.

Table S1: PAL results on Meta-Dataset by using ResNet18. We followed the protocol in [22].

Dataset Test Acc Dataset Test Acc Dataset Test Acc Dataset Test Acc Dataset Test Acc
ILSVRC 61.68 Omniglot 65.50 Aircraft 64.75 Birds 77.20 Textures 81.07

Quick Draw 58.05 Fungi 48.80 VGG Flower 90.68 Traffic Sign 77.98 MSCOCO 59.64



3. Symbol and Experiment
First, We provide the detail of training methods compared in Table 3 and Table 5. Then, we extend Table 3 and provide the

full results in Table. S2. For few-shot evaluation, we follow [21] and report the mean as well as the 95% confidence interval
among the 1000 randomly sampled tasks. For fully-supervised image classification evaluation, we classify all samples from
a fixed base test set in [6] among the base classes and then report the accuracy.
Single Objective Training: LCE , LSupCT .
For LCE , we train a feature extractor and a classifier. We use feature extractor to perform prototype classification for few-
shot evaluation, and use the output logits from the classifier to classify the base testing images. For LSupCT , we only train a
feature extractor for few-shot evaluation.
Multi-Task Training: LCE+LSupCT

We train a single network while using the sum of LCE and LSupCT as the final objective. The output of the feature extractor
is feed into both a classifier and a projector. During the training, we calculate the LCE on the classifier outputs and the
LSupCT on the projector outputs. During the testing, we discard the projector and then use the remaining modules for
few-shot evaluation and classification on base test set.
Mutual Training on Two Objectives: LSupCT ↔ LCE :
We train the Partner Encoder and the Main Encoder from scratch at the same time. The Partner Encoder is trained under
supervised contrastive learning. Both of the two networks share the same classifier and we calculated the LCE for both of
the two networks. We calculate both the logit-level and feature-level alignment constraints from the Partner Encoder to the
Main Encoder. During the testing, we use the Main Encoder and the classifier for the evaluation.
Uni-Direction LCE → LSupCT:
We first train the Partner Encoder and a classifier using LCE . Then we fix Partner Encoder and train the Main Encoder from
scratch using LSupCT . Meanwhile, we finetune the classifier by using the objective logit-level alignment constraint only.
The feature-level alignment from the Partner Encoder to the Main Encoder is also applied. During testing, we discard the
Partner Encoder, and use the Main Encoder and the classifier for the evaluation on few-shot tasks and the base testing set.
Alternative of Partner Encoder in PAL LCE → LCE , LCT → LCE :
We use the symbol of the full training scheme to indicate the loss used to train the Partner Encoder, i.e., we train the Partner
Encoder using either LCE for LCE → LCE or LCT for LCT → LCE . Then we fix Partner Encoder and train the Main
Encoder from scratch using LCE and the alignment constraints. During evaluation, we use the Main Encoder and a classifier.
Notably, even though a classifier is involved in the training of Partner Encoder by using LCE , to evaluate the property of the
extracted features, we still discard that classifier and train a new classifier from scratch jointly with the Main Encoder. In this
way, the only difference among the methods compared in Table 5 is merely the training objective of Partner Encoder.

According to the comparison in Table S2, since the feature extractor trained by LCE may have already been overfitted to
the base class and lost information which is irrelevant to the base classes but critical for novel classes, the features extracted by
the LCE-pretrained model is not as good as the features by LSupCT -pretrained models. Meanwhile, it even under-performs
the multi-task training (LCE + LSupCT ).
Implementation Detail: We followed [11, 21] and set output dimension of residual blocks as 64-160-320-640 and the
dropout blocks are used in the last two residual blocks. For few-shot testing, following [21], we augment the each support
sample 5 times and extract the features separately. Then, we average the normalized feature instances and the prototype is
obtained by normalizing the averaged feature. The logits of the base test set, generated from the classifier (if applicable), are
used for fully-supervised classification.

Table S2: Extend Table 3. Ablation study on the training schemes of combining two objectives.

Train Scheme 5-Way Few-shot Base1-Shot 5-Shots
LCE 63.76± 0.62 81.17± 0.45 80.90
LSupCT 62.29± 0.67 76.32± 0.48 n/a

LCE + LSupCT 67.53± 0.65 82.14± 0.48 83 .20
LSupCT ↔ LCE 65.21± 0.63 81.53± 0.44 80.13
LCE → LSupCT 66.54± 0.63 81.83± 0.44 80.39

LSupCT → LCE [ours] 69.37± 0.64 84.40± 0.44 82.98

∗ LSupCT doesn’t train a base classifier.



4. Ablation Study Analysis
4.1. Novel Test Set Performance

As LCE → LSupCT first trains the fP and classifier under LCE only, the initial rigid optimization towards the hard
anchors by LCE may limit accuracy on base and novel sets.
LSupCT ↔ LCE follows the setting in [25] where the fP and fM are jointly trained from scratch and the alignment loss

is used to update both fP and fM simultaneously. As LCE contributes to optimizing fM and classifier, fP can also refer to
the guidance of hard anchors for a easier converging via Lfeat, which will compromise its generality for regularization and
result in sub-optimal solution for fM on few-shot task. Similarly, LSupCT +LCE trains a single network with two objectives
jointly may also lead to local optimal due to rigid optimization.

Besides the sub-optimal regularization, the under-developed soft anchors extracted from fP trained without using class
label may also hurt the training of fM . For example, as the LCT -trained fP excludes class label information, LCT → LCE

underperforms PAL. In contrast, PAL first fully trains fP and then fixes it to extract soft anchors, where the well-developed
and generality-preserved soft anchors can serve as better regularization.

4.2. Base Test Set Performance

For Table 3 Row1,4, LSupCT ↔ LCE sets regularization on baseline LCE as mutual learning. The classifier may overfit
to base training set caused by the sub-optimal regularization to fM mentioned above.

For table 6 Row4,5,6, with presence of Lfeat, further imposing Llogit or LKL at logit-level may overfit classifier on base
train set and limit the accuracy on base test set.

4.3. Hard Sample Selection

With analysis in SupCT [9], Lfeat enumerates all sample pairs, including hard samples which can provide larger gradient.



5. Visualization
Besides the quantitative evaluation, we provide eight visualization examples on the novel domain of MiniImageNet from

Fig. S1 to S4. Each plot in the visualization is generated by applying tSNE function on the extracted image features.
The features are extracted by the network trained with different framework or losses:
• (a) Main Encoder trained under PAL (LSupCT → LCE)
• Single Objective: a feature extractor trained under (b) LSupCT (c) LCE (d) LCT

• (e) the model trained under LCE during mutual learning LSupCT ↔ LCE

• (f) a feature extractor trained under multi-task LSupCT + LCE

• Main Encoder aligned with the Partner Encoder trained under (g) LCE (denoted as LCE → LCE) and (h) LCT

(denoted as LCT → LCE)
For feature extraction, we feed the raw images without any augmentation as input into the network. For each example,

the images used for each plot are identical with each other. To best mimic the condition of few-shot evaluation and for fair
comparison, for each example, we select 5 classes and each class has 30 images.

Prior works [5, 15, 20, 21] has shown that feature extractor trained for fully supervised classification over base classes has
promising transferability from base to novel classes. However, there are still risks that such feature extractor overfits to the
base classes and the ability of the adaptation can be compromised. To quantitatively evaluate the features extracted by the
pre-trained model without any adaptation, we choose prototype classification over novel classes under few-shot settings. As
such, a discriminative feature space with compact clusters over the novel domain is critical. To this end, we are specifically
motivated to ensure the feature extractor trained on the base classes with additional constraints can preserve as much as
useful information for object while maintain high classification accuracy. In this way, we expect such feature extractor can
be robustly adapted to novel classes. According to the visualization, by comparing (a)-(h), the features extractor trained by
LSupCT → LCE [ours] can generate the most discriminative feature space for the samples of novel classes, which works
best for few-shot prototype classification.
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Figure S1: Two visualization examples on MiniImageNet novel set. For each example, the features are extracted by models
trained with (a) PAL (ours), (b) Supervised contrastive learning LSupCT , (c) Cross-entropy loss LCE , (d) Unsupervised
contrastive loss LCT [2], (e) Mutual Learning (LSupCT ↔ LCE), (f) Multi-task learning (LSupCT + LCE), as well as the
Main Encoders constrained by Partner Encoder trained with (g) LCE and (h) LCT . To best mimic the condition of few-shot
evaluation and for fair comparison, for each row, only 5 classes are selected and the image samples used for all four plots are
identical with each other.
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Figure S2: Two visualization examples on MiniImageNet novel set. Continued from Fig. S1. To best mimic the condition of
few-shot evaluation and for fair comparison, for each row, only 5 classes are selected and the image samples used for all four
plots are identical with each other.
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Figure S3: Two visualization examples on MiniImageNet novel set. Continued from Fig. S2. To best mimic the condition of
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plots are identical with each other.
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Figure S4: Two visualization examples on MiniImageNet novel set. Continued from Fig. S3. To best mimic the condition of
few-shot evaluation and for fair comparison, for each row, only 5 classes are selected and the image samples used for all four
plots are identical with each other.
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