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We provide the proof of Lemma 3.1 in the main paper, as
well as additional details on the datasets and the implemen-
tation. We further include additional qualitative examples.

A. Proof of Lemma 3.1
Lemma 3.1. Let the sampled image I be of resolution
[N0, N0, C], then the worst-case number of steps T (length
of the critical path) required is O(logN0).

Proof. At the first sampling step, i.e. at the coars-
est level, the spatial dimensionality of the image is[
N0/2

b(L+1)/2c, N0/2
bL/2c, C

]
. At each level starting

from the coarsest, the spatial resolution increases by a fac-
tor of 2, alternatingly along the rows and columns. Thus,
to generate an image of size [N0, N0, C] starting from an
image of size [1, 1, C], the number of levels of the coarse-
to-fine pyramid to traverse equals

L = 2 · logN0. (8)

At the coarsest level of spatial resolution 1×1, with its fully
autoregressive PixelCNN structure, the number of sampling
steps is equal to the spatial dimension and, therefore, is
given as

TL = 1. (9)

Let the number of squeeze operations applied at level i be
nSi such that we obtain 4nSi subsampled images from Fi.
This implies that the number of sequential steps at level i is

Ti = 4nSi , (10)

assuming that each autoregressive sampling step can be car-
ried out in parallel (hence in constant time). Therefore, the
total number of sequential steps (length of the critical path)
required for sampling is

T =

L∑
i=1

Ti = TL +

L−1∑
i=1

Ti

= 1 +

L−1∑
i=1

4nSi

(11)

Under the assumption that the number of squeeze opera-
tions at any level is constant with O(1) 3 4nSi � N0, we
obtain the the number of sampling steps required as

T ∈ 2 · logN0 · O(1) = O(logN0) (12)

B. Additonal Implementation Details

Datasets. CelebA-HQ [23] consists of 30K images of
which 26K are used for training, 1000 images for valida-
tion, and 3000 images are provided in the test set.

The LSUN [49] bedroom, church outdoor, and tower
datasets consist of 3M, 126K, and 700K images, respec-
tively, in the training set. The validation set consists of 300
images for each of the datasets. For training at 128 × 128
resolution, similar to [25, 31], the images are first center
cropped to the spatial resolution of 256 × 256 and then re-
sized to a spatial resolution of 128× 128.

Further, ImageNet [38] consists of 1.3M images in the
training set and 50K images in the test set. We follow [32,
35] for resizing the images to size 128 × 128, where the
images are first cropped along the longer spatial dimension
and then resized to the desired spatial resolution.

Optimization. Similar to [31, 39], we use Adam [24] with
an initial learning rate of 10−3. Additionally, the parameters
are taken as β1 = 0.95, β2 = 0.9995 and Polyak averaging
is set to 0.9995. The learning rate decays exponentially at a
rate of 0.999995.

Dataset Parameter Count

CelebA-HQ (256× 256) 166M
CelebA-HQ (1024× 1024) 349M
LSUN (128× 128) 224M
ImageNet (128× 128) 346M

Table 6. Parameter count of PixelPyramids across different
datasets.

In Tab. 6 we provide the number of parameters for differ-
ent datasets. The number of parameters varies depending on
the size and the complexity of the dataset. Within the U-Net
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Figure 10. Low-entropy decomposition. Entropy values at differ-
ent pyramid levels on ImageNet (128 × 128). In contrast to the
other datasets considered in the main paper, the entropy values for
the decomposition of ImageNet are not significantly reduced com-
pared to the original image.

module at each level, the number of channels increases by a
factor of two for every downsamling/upsampling layer. The
first layer has 64 channels for the CelebA-HQ (256 × 256,
1024 × 1024) and LSUN (128 × 128) datasets. Owing to
the multimodality of the dataset, ImageNet (128×128) even
at 128 × 128 resolution requires same number of parame-
ters as CelebA-HQ 1024× 1024, as we need to increase the
width of the first layer of the U-Net module to 128 chan-
nels. This design choice is further supported by the Paired
Pyramid decomposition of ImageNet 128 × 128 (Fig. 10),
which shows that the entropy is not reduced as significantly
for the fine components as is the case for the CelebA-HQ
dataset (cf . Fig. 4).1

C. Additional Results

In Fig. 11 we show the entropy values for the fine com-
ponents of the Paired Pyramid representation of the low-
resolution CIFAR10 [29] dataset. In comparison to the
CelebA-HQ dataset (cf . Fig. 4), where the entropy values
are significantly reduced, e.g. for F1 from 5.51 bits for the
original pixel values to 3.14 bits for the fine component,
the entropy of the fine components for the CIFAR10 dataset
does not reduce significantly, even less so than for Ima-
geNet (128× 128). This limits the applicability of our Pix-
elPyramids framework to such multimodal low-resolution
datasets, since the fine components of the Paired Pyramid
representation have similarly high entropy as the original
image. This is further observed in Tab. 7, where the den-
sity estimates on CIFAR10 with fully autoregressive ap-
proaches are better compared to that with PixelPyramids
with its partial autoregressive structure. We thus focus on
high-resolution images here, since this is where the key lim-
itations of existing exact inference models currently lie.

1The entropy values across different datasets are not comparable due to
different preprocessing procedures.
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Figure 11. Low-entropy decomposition. Entropy values at dif-
ferent pyramid levels on CIFAR10. The entropy values for the de-
composition are not significantly reduced compared to the original
image for this multimodal low-resolution dataset.

Method bits/dim. (↓)

PixelCNN [45] 3.03
PixelCNN++ [39] 2.92
Glow [25] 3.35
Flow++ [18] 3.08
Residual Flow [51] 3.28
MaCoW [31] 3.16

PixelPyramids (ours) 3.19

Table 7. Evaluation on the 8-bit CIFAR10 (32× 32) dataset.

D. Additional Examples
To show that the pixel outliers in the images synthe-

sized with PixelPyramids can indeed be resolved, we in-
clude Fig. 12, where we apply a median filter to remove
the artifacts resulting from the cyclic shift of pixel values
in the vicinity of 0 and 255 (Algorithm 1). The pixel out-
liers are detected using the Isolation Forest algorithm [52]
in the HSV space and the outlier pixels are replaced using a
median filter over an 7× 7 neighborhood.

Algorithm 1: Improvement of images synthesized
with PixelPyramids using pixel outlier detection. m
is the filter size for the median filter and n is the
pixel neighborhood for outliers.

1 Sample Î ∼ pθ,φL
(I0) ; // Sample the image

2 Îmed ← medianfilter(Î,m); // Median filter

3 Îhsv ← rgb2hsv(Î); // Convert to HSV

4 Omask ← isolationforest(Îhsv, n); // Outliers
5 Î[Omask]← Îmed[Omask]; // Assign median

We include additional qualitative examples obtained
from our PixelPyramids on the high resolution datasets
CelebA-HQ (256×256; Fig. 13), CelebA-HQ (1024×1024;
Fig. 14), LSUN (bedroom, church outdoor, and tower,
(128 × 128); Figs. 15 to 17), and ImageNet (128 × 128;
Fig. 18). PixelPyramids can synthesize high quality and



Figure 12. Removal of pixel outliers from images synthesized with PixelPyramids on 5-bit CelebA-HQ (256 × 256): Images generated
with our PixelPyramids framework (row 1 & 3); generated images after the application of pixel outlier removal using a median filter (rows
2 & 4, see text).

diverse samples, capturing important visual properties in
varied high-resolution datasets. Furthermore, in Figs. 19
and 20 we show the applicability of our PixelPyramids
framework to the task of super-resolution, where fine details
are iteratively added to the coarse input image (128×128) at
every level of PixelPyramids to generate a high-resolution
output with a spatial resolution of 1024 × 1024. We ob-
tain an average PSNR(↑) of 27.25dB compared to 23.18dB
for the baseline bicubic kernel [30] and LPIPS(↓) of 0.28
compared to 0.51 with a bicubic kernel.
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Figure 13. Random samples from 5-bit CelebA-HQ (256× 256).



Figure 14. Random samples from 8-bit CelebA-HQ (1024× 1024).



Figure 15. Random samples from 5-bit LSUN bedroom (128× 128).



Figure 16. Random samples from 5-bit LSUN church (128× 128).



Figure 17. Random samples from 5-bit LSUN tower (128× 128).



Figure 18. Random samples from 8-bit ImageNet (128× 128).



Figure 19. Super-resolution with PixelPyramids resizing a 128× 128 image to 1024× 1024 on the 8-bit CelebA-HQ (1024× 1024).



Figure 20. Super-resolution with PixelPyramids resizing a 128× 128 image to 1024× 1024 on the 8-bit CelebA-HQ (1024× 1024).


