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A. Supplementary Material Organization

In this section, we briefly describe the organization of
our supplementary material so that readers can find perti-
nent material with ease. Overall our supplementary material
provides more white-box experiments, more black-box ex-
periments, results for adversarial training of Vision Trans-
formers and further investigation of the transferability phe-
nomena observed in the main paper.

White-Box and Black-Box Attacks: We start with full
descriptions of the white-box attack used in this paper and
their corresponding parameters in Section B. In this section,
we also provide the CIFAR-100 white-box attack results
not given in the main paper (due to brevity as well as re-
dundancy). Aside from the conventional white-box attacks,
we also give more details for the Self-Attention Gradient
Attack (SAGA) in Section C. We follow up our white-box
type of attack sections with a full description of the black-
box adversarial model and attack parameters in Section D.
In this section, we also include black-box attack experimen-
tal results on individual models (Vision Transformers, Big
Transfer Models and ResNets) for RayS. We further provide
a series of hyperparameter experiments used to fine-tune the
transfer based black-box attack (also known as the adaptive
black-box attack). The results of these hyperparameter ex-
periments reveal some very interesting implications for the
design of future black-box attacks.

Decision Region Graphs and Transferability: In Sec-
tion E, we delve further into the transferability phenom-
ena. We start by discussing recent work that mathemati-
cally demonstrates the equivalence between Transformers
and CNNs. We then empirically show that the conditions
under which this equivalence happens do not likely occur
for Vision Transformers and other CNNs. We demonstrate
this empirically by graphing the decision regions for differ-
ent Vision Transformers and CNNs for CIFAR-10, CIFAR-
100 and ImageNet.

Adversarial Trained Vision Transformers: One ad-
versarial machine learning topic omitted for space is ad-
versarial training. Can Vision Transformers be adversar-
ially trained as well as CNNs? In Section F, we answer
this question by experimenting with different adversarial
training techniques on Vision Transformers and CNNs for
CIFAR-10 and CIFAR-100. Lastly, in Section G we provide
additional numerical tables that may assist anyone wishing
to replicate our results.

B. White-Box Attacks
In this section, we mathematically define the white-box

adversarial model. We provide detailed descriptions of the
white-box attacks tested in this paper alongside the param-
eters chosen for each white-box attack.

B.1. White-Box Adversarial Model

Mathematical Description: Formally, we mathemati-
cally describe our adversarial model follows: We start with
a classifierC with (trained) parameters θ. Given input x, the
classifier outputs label y such that C(x, θ) = y. The goal of
the adversary is to create an adversarial sample xadv from
x such that:

C(xadv, θ) 6= y (7)

where xadv is created from x using attack A. That is,
xadv , A(x) and xadv is subject to the following con-
straint:

‖x− xadv‖p ≤ ε (8)

where p is the type of norm used to measure the distance
between x and xadv and ε is the maximum allowed distance
between x and xadv . Finally, there is one additional con-
straint. The image must be within a valid pixel range:

x ∈ [pmin, pmax]
n×m×r (9)

where in Equation 9, pmin and pmax refer to the minimum
and maximum pixel values of a valid image, n and m refer
to the size of the image, and r represents the number of
color channels in the image.

Adversarial Capabilities: In the white-box adversarial
model, the adversary has knowledge of C, θ, x and y. Here
C represents the type of classifier (e.g. CNN) and classifier
architecture (e.g. ResNet-56). The adversary also knows
the trained parameters of the classifier θ. For a CNN or
Transformer, this would be the weights and biases of the
classifier model. Lastly, the adversary has a clean example
x and corresponding class label y. In this paper, we focus on
the untargeted attack model. That is,the adversary succeeds
if and only if Equation 7, Equation 8 and Equation 9 all hold
true.

B.2. Types of White-Box Attacks

In a white-box attack, the adversary crafts xadv from x
using technique A. The choice of A can heavily affect the
success rate of the attack (the percent of samples that are
misclassified by C). From the literature, there are various
techniques to craft white-box attacks. Below we describe
each of the attacks tested in this paper:

1. Fast Gradient Sign Method - The Fast Gradient Sign
Method (FGSM) [13] creates adversarial examples



through the addition of non-random noise in the di-
rection of the gradients of the loss function:

xadv = x+ ε ∗ sign(∇xL(x, y; θ)) (10)

where L is the loss function of the classifier C. Note
that in Equation 10, only the sign of the loss function is
used and the magnitude of the second term is dictated
by ε, which is a small perturbation added to the image
x. It is also important to note that this is a single-step
attack. The adversary backpropagates on the model
only once to obtain the gradient of the loss function
and then applies this directly to x.

2. Projected Gradient Descent - Projected Gradient
Descent (PGD) [24] is a multi-step variant of the
FGSM algorithm. It attempts to find the minimum
bounded perturbation that maximizes the loss of a
model through initializing a random perturbation in a
ball of radius d with center x. A gradient step is taken
in the direction of the greatest loss and the perturbation
is then projected back into this ball. The k-step PGD
algorithm initializes x0 = x and the perturbed image
xi in the ith step is computed as:

xi = P (xi−1 + α ∗ sign(∇xL(x
i−1; y; θ))) (11)

where P is the projection function that projects the ad-
versarial data back into the ε-ball centered at xi−1 if
necessary, and α is the step size. The bounds on the
projection are defined by the lp norm.

3. Backward Pass Differentiable Approximation
- Backward Pass Differentiable Approximation
(BPDA) [2] is an attack designed to overcome non-
differentiable functions that would ordinarily prevent
the use of backpropagation to generate adversarial
examples. BPDA is capable of creating effective
adversarial examples for those cases in which the de-
fense employs gradient masking or another technique
in which the gradient is obfuscated. The gradient can
be obfuscated in one of three ways: shattered gradi-
ents, stochastic gradients, and exploding/vanishing
gradients. Shattered gradients in a defense either in-
troduce numerical instability or cause a gradient to be
nonexistent or incorrect [2]. Stochastic gradients are
generally a result of randomized defenses. Exploding
and vanishing gradients generally occur in recurrent
neural networks.

For a neural network f(·) = f1...j with a non-
differentiable layer f i(·), the first step of BPDA is to
find a differentiable function g(x) that approximates f i.
The gradient of the network f,∇xf(x), is then approx-
imated by performing a forward pass through f(·), and
then only on the backward pass replacing f i(x) by

g(x). Adversarial examples are generated using a sim-
ilar approach to PGD [24].

4. Momentum Iterative Method - A subset of gradient
descent approaches, the Momentum Iterative Method
(MIM) [11] applies a velocity vector in the direction of
the gradient of the loss function across iterations. Be-
cause MIM takes into account previous gradients, it is
better able to overcome narrow valleys, small bumps,
and local minima and maxima. Specifically, the mo-
mentum algorithm gathers the gradients of t iterations
with a decay factor µ. The adversarial example x∗t is
perturbed in the direction of the accumulated gradient
with a step size of α. Note that if µ = 0, the MIM
algorithm degenerates to iterative FGSM.

The accumulated gradient is derived as follows for
untargeted attacks: Let x∗t be the current adversarial
example at iteration t with original class label y and
x∗0 , x. The accumulated gradient is:

gt+1 = µ ∗ gt +
J(x∗t , y)

||∇xJ(x∗t , y)||1
(12)

where J(x∗, y∗) is the loss function. For a L∞
bounded attack, the adversarial example at iteration t
is:

x∗t+1 = x∗t + α ∗ sign(gt+1) (13)

5. Carlini and Wagner Attack - The aim of the Carlini
and Wagner (C&W ) attack [7] is to perturb an image
by a minimal amount such that the image will be mis-
classified. The following objective function is used to
find the adversarial noise:

min ||1
2
(tanh(ω) + 1)− x||22 + c · f(1

2
(tanh(ω) + 1))

(14)

f(x′) = max(max{Z(x′)i : i 6= t} − Z(x′)t,−κ)
(15)

where ω is the perturbation, t is the chosen target class,
κ is a constant that controls the confidence with which
the sample is misclassified, Z(x′) is the output from
the logits layer, and c is a constant chosen through bi-
nary search. C&W is an iterative attack because the
objective of the C&W attack is formulated as an opti-
mization problem, as given by Equation 14.

6. Auto Projected Gradient Descent - Auto Projected
Gradient Descent (APGD) [10] is an automated ver-
sion of PGD in which the step size is not fixed, but
instead changes adaptatively. In APGD, the total iter-
ations are divided into an exploration phase and an ex-
ploitation phase. A larger step size is used in the for-
mer phase, allowing for quicker exploration, while a



smaller step size is used in the latter phase to fine-tune
the maximization of the loss function. The choice of
step size in APGD is determined by a budget of Niter

iterations and the cumulative progress of optimization,
as defined by two conditions in Equations 16 and 17:

wj−1∑
i=wj−1

1f(x(i+1))>f(x(i)) < ρ ∗ (wj − wj−1), (16)

η(wj−1) ≡ η(wj) ∧ f (wj−1)
max ≡ f (wj)

max (17)

where wj are the checkpoints at which the algorithm
can reduce the step size by a factor of 2 and fkmax is
the highest objective value reached in the first k it-
erations. If one of the above two conditions is met,
then the step size at iteration k = wj is halved and
η(k) := η(wj)/2 for every k = wj + 1, ..., wj+1. A
version of the Auto-PGD which uses cross-entropy is
referred to as APGD-CE. This attack was shown to be
the best performing attack among the different APGD
variations [10]. Thus, APGD-CE is used in our white-
box attacks.

C. Self-Attention Gradient Attack (SAGA)
In the main paper we introduced the Self-Attention Gra-

dient Attack (SAGA). Here we provide additional experi-
mental results and parameters related to our attack.

SAGA Adversarial Images: In Figure 4 and Figure 5,
we show examples of the adversarial images generated by
SAGA for CIFAR-10 and ImageNet. We generate these
images from a defense comprised of ViT-L-16 and BiT-M-
R101x3 for CIFAR-10 and ViT-L-16 and BiT-M-R152x4
for ImageNet. In the attack, we use the l∞ norm and
ε = 0.031 for CIFAR-10 and ε = 0.062 for ImageNet.
All attacks are untargeted. From these figures, it is clear
that SAGA is capable of creating adversarial examples with
minimal visual perturbations on par with standard white-
box attacks.

SAGA Hyperparameters: In the main paper, we men-
tioned that the scaling factors αk must be chosen carefully
for each model when running SAGA. In Table 6, we give
the α values and corresponding robust accuracies for each
attack. From the table, it can clearly be seen that simple
averaging (α1 = 0.5, α2 = 0.5) does not yield a high at-
tack success rate, i.e., low robust accuracy. To illustrate,
for the Bit/ViT defense for CIFAR-10, the robust accuracy
with simple averaging yields an average robust accuracy of
47.5%. However, when each α is fine-tuned properly, it
yields a robust accuracy of only 26% (an attack success rate
of 74%).

It is worth noting that while the α values vary greatly
in magnitude, each holds significance. For instance, α1 =

0.998 for ViT-L-16 but only 2e − 4 for BiT-M-R101x3
for SAGA for CIFAR-10. The natural question arises of
whether the gradient for BiT-M-R101x3 could simply be
0. The concise answer to this is that even minute α values
are critical to crafting adversarial examples that are mis-
classified by both models. For empirical proof that a sin-
gle gradient does not suffice, one needs only to look at the
transferability results in Table 2 in the main paper. Table 2
clearly shows that using only a single model gradient in a
white-box attack does not yield highly transferable adver-
sarial examples.

ResNet SAGA Results: In the main paper, we tested
Vision Transformer and Big Transfer Model combinations.
However, SAGA works on other Vision Transformer and
CNN combinations as well. In Table 6, we demonstrate a
proof of concept of this by attacking a ViT-L-16/ResNet-
164 pair for CIFAR-10. Similar to the ViT/BiT combina-
tion, it can be seen that the ViT/ResNet combination is not
secure against SAGA, as the robust accuracy is only 15%.

D. Black-Box Attacks
In this section, we mathematically define the black-box

adversarial model. We provide detailed descriptions of the
black-box attacks tested in this paper alongside the param-
eters chosen for each attack. Unlike section B in which a
single adversarial model suffices, here the black-box adver-
sarial model is divided into two distinct types: query based
and transfer based models.

As a precursor, it is important to note the basic common-
ality between the two threat models. The definition of a
successful attack is unchanged for all threat models. That is,
the three conditions we previously defined must hold. First,
the adversarial sample must be misclassified (Equation 7).
Second, the adversarial sample xadv must be within a cer-
tain distance of the original sample x (Equation 8). Third,
the adversarial sample must have pixels within a valid range
(Equation 9).

The other commonality between the two black-box ad-
versarial models are the components that make up the de-
fense: a classifier C with trained parameters θ. In contrast
to the white-box adversary, we will also explicitly define ad-
ditional training components. We define the training sam-
ples that C was trained on to obtain θ as the set (X,Y ). Let
us further define the pre-training dataset as (X

′
, Y
′
). Here

the pre-training dataset is only applicable to Vision Trans-
formers and Big Transfer Models, where the pre-training
dataset (X

′
, Y
′
) is ImageNet-21K and the training dataset

(X,Y ) is either CIFAR-10, CIFAR-100 or ImageNet.

D.1. Query Based Adversarial Model

Adversarial Capabilities: For the query based adver-
sarial model, the attacker lacks knowledge of θ, the spe-
cific classifier architecture C, the training set (X,Y ) and



Table 3. White-box attacks on Vision Transformers, Big Transfer Models and ResNets. The attacks are done using the l∞ norm with
ε = 0.031 for CIFAR-10 and ε = 0.062 for ImageNet. In this table the robust accuracy is given for each corresponding attack. The last
column ”Acc” refers to the clean accuracy of the model. In the main paper part of this table was also presented (see Table 3.1) but without
CIFAR-100 results for brevity. The table here represents the full white-box attack results.

CIFAR-10
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-32 37.9% 1.8% 17.6% 4.4% 0.0% 0.0% 98.6%
ViT-B-16 39.5% 0.0% 20.3% 0.3% 0.0% 0.0% 98.9%
ViT-L-16 56.3% 1.2% 28.7% 5.9% 0.0% 0.0% 99.1%
ViT-R50 40.8% 0.1% 13.4% 0.2% 0.0% 0.0% 98.6%
BiT-M-R50x1 66.0% 0.0% 14.9% 0.0% 0.0% 0.0% 97.5%
BiT-M-R101x3 85.2% 0.0% 17.1% 0.0% 0.0% 0.0% 98.7%
ResNet-56 23.0% 0.0% 5.0% 0.0% 0.0% 0.0% 92.8%
ResNet-164 29.0% 0.0% 5.4% 0.0% 0.0% 0.0% 93.8%

CIFAR-100
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-32 20.8% 1.9% 13.4% 3.1% 0.0% 0.0% 91.7%
ViT-B-16 20.4% 0.0% 11.9% 0.5% 0.0% 0.0% 92.8%
ViT-L-16 33.0% 1.6% 15.1% 4.7% 0.0% 0.0% 94.0%
ViT-R50 22.0% 0.2% 9.7% 0.4% 0.0% 0.0% 91.8%
BiT-M-R50x1 36.0% 0.0% 7.0% 0.0% 0.0% 0.0% 87.4%
BiT-M-R101x3 1.2% 0.0% 0.4% 0.0% 0.0% 0.0% 91.8%
ResNet-56 6.0% 0.2% 3.3% 0.4% 0.0% 0.0% 71.6%
ResNet-164 7.6% 0.3% 3.7% 0.9% 0.0% 0.0% 74.2%

ImageNet
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-16 23.1% 0.0% 7.3% 0.0% 0.0% 0.0% 80.3%
ViT-L-16 (224) 27.9% 0.0% 8.4% 0.0% 0.0% 0.0% 82.0%
ViT-L-16 (512) 29.8% 0.0% 8.4% 0.0% 0.0% 0.0% 85.4%
BiT-M-R50x1 28.7% 0.0% 3.5% 0.0% 0.0% 0.0% 79.9%
BiT-M-R152x4 60.9% 0.0% 15.2% 0.0% 0.0% 0.0% 85.3%
ResNet-50 11.8% 0.0% 1.4% 0.0% 0.0% 0.0% 74.5%
ResNet-152 18.1% 0.0% 2.7% 0.0% 0.0% 0.0% 77.0%

Table 4. White-box attack parameters for CIFAR-10.
Attack Parameters
FGSM ε = 0.031
PGD ε = 0.031, εstep = 0.00155, steps = 20
BPDA ε = 0.031, steps = 100, max iterations = 100, learning rate = 0.5
MIM ε = 0.031, εstep = 0.00155, decay factor = 1.0
CW confidence = 50, step size = 0.00155, steps = 30
APGD ε = 0.031, number of restarts = 1, ρ = 0.75, n2 queries = 5000

the pre-training set (X
′
, Y
′
). The adversary starts with a

clean example x and is able to query the classifier C, with
different perturbations (e.g. x + ε).The adversarial model
here is constrained by the fact that for each example x, only
a fixed number of queries q can be made on C. In this threat
model, the type of response from the classifier C also mat-
ters. When the adversary queries C, the defense can return
either the hard label (class label only) or the correspond-
ing probability vector. In this paper, we consider only the
adversary which has access to the hard label.

Attack Setup and Discussion: To test query based ad-
versaries, we use the RayS attack [8]. We use 1000 clean

examples for CIFAR-10 and ImageNet. In our attacks, we
set the query budget q to be 10, 000 for each sample. We
use ε = 0.031 for CIFAR-10 and ε = 0.062 for ImageNet
in conjunction with the l∞ norm. Due to the high compu-
tational complexity of the attack, we test only single mod-
els for CIFAR-10 and ImageNet. We omit CIFAR-100 and
BiT-M-R152x4. Our attack results are shown in Table 7.
In general, it can be seen that single models are not robust
to the RayS attack, as no model has more than 30% robust
accuracy.



Table 5. White-box attack parameters for ImageNet.
Attack Parameters
FGSM ε = 0.062
PGD ε = 0.062, εstep = 0.0031, steps = 20
BPDA ε = 0.062, steps = 100, max iterations = 100, learning rate = 0.5
MIM ε = 0.062, εstep = 0.0031, decay factor = 1.0
CW confidence = 50, step size = 0.0031, steps = 30
APGD ε = 0.062, number of restarts = 1, ρ = 0.75, n2 queries = 5000

Figure 4. Adversarial images generated using SAGA on CIFAR-10. The top row of images are the the clean images generated from the
CIFAR-10 test set. The bottom row of images are the adversarial images generated using SAGA with the l∞ norm and ε = 0.031.
These images correspond to SAGA when the models are ViT-L-16 and BiT-M-R101x3. Visually, there is very little perceivable difference
between the clean and adversarial images generated by SAGA.

D.2. Transfer Based Adversarial Model

Adversarial Capabilities: The transfer based adversary
is granted a wide range of abilities. Specifically, a transfer
based adversary may know part or all of the original training
data (X,Y ) for C and may have access to the pre-training
data (X

′
, Y
′
). Unlike query based adversaries, the transfer

based adversary is not restricted by the number of queries
made to C. The only unknowns to the adversary are the
architecture classifier for C and the trained parameters θ.
The general strategy for the transfer based adversary is as
follows: the attacker starts with an untrained classifier S.
Note that S is often referred to as the synthetic model. If
the adversary has access to the pre-training data, they start
by training S with (X

′
, Y
′
). The adversary then queries C

to label the training set X . They then train S on (X, Ŷ ),
where Ŷ are the hard class labels obtained from C. Once
S has been trained, a white-box attack A can be run on S
to generate adversarial examples. These examples are then
applied to C in the hopes that the adversarial samples are
able to transfer from S to C.

Attack Setup and Discussion: Several components
must be selected for a transfer attack. These components in-
clude the synthetic architecture S, the percentage of training
data (X,Y ) visible to the adversary, and the type of white-
box attack A that will be used on S to generate adversarial
examples. Ideally, we want to test under the strongest pos-
sible adversary. This means a careful choice of S and uti-
lizing 100% of the training data. However, as these exper-
iments are time consuming - each attack requires training
a synthetic model from scratch - we first conduct several
smaller scale experiments to help us choose the hyperpa-

rameters for the main attack. These results are shown in
Table D.2 and Figure 6. For A, we use the MIM attack to
generate samples with S. We set the maximum perturba-
tion ε = 0.031 for CIFAR-10 and experiment with a range
of different synthetic models S.

From the hyperparameter experiments, we can observe
several interesting results. First, when attacking a Vi-
sion Transformer such as ViT-L-16, the choice of synthetic
model greatly affects the robust accuracy. Even when only
10% of the data is available, if S is a Vision Transformer
(ViT-B-32) and it is pre-trained on ImageNet-21K, the ro-
bust accuracy of ViT-L-16 is only 53%. If the attacker uses a
synthetic model that is NOT pre-trained (but still ViT-B-32),
the robust accuracy is 92.4%.This presents a new challenge
for the attacker. Originally, the architecture of the synthetic
model did not greatly affect the performance of the attack
in attacks on CNNs [29]. This is likely due to the fact that
these attacks were transferring samples from CNNs to other
CNNs. However, the same result does not hold for Vision
Transformers: using a CNN (like VGG-16) does not give
a very high attack success rate. We can see that when we
do a 100% strength attack on ViT-L-16 using VGG-16, the
robust accuracy is still 46.8%. Comparing this result to the
same attack with ResNet-56, it can be seen that the robust
accuracy is only 4.8%.

The goal of our hyperparameter experiments was to find
an appropriate set of parameters for attacking Vision Trans-
former based defenses. Our experiments are successful: we
can see that using a pre-trained ViT-B-32 with even 10% of
the training data gives good attack results. Additionally, our
experiments reveal a critical concept. Unlike CNN-based



Figure 5. Adversarial images generated using SAGA on ImageNet. The top row of images are the the clean images generated from the
ImageNet validation set. The bottom row of images are the adversarial images generated using SAGA with the l∞ norm and ε = 0.062.
These images correspond to SAGA when the models are ViT-L-16 and BiT-M-R152x4. Visually, there is very little perceivable difference
between the clean and adversarial images generated by SAGA.

Table 6. Self-Attention Gradient Attack (SAGA) results for CIFAR-10, CIFAR-100 and ImageNet. In the table α1 represents the coefficient
used to scale the gradient of the ViT model and α2 represents the coefficient used to scale the gradient of the respective CNN. In the table
ViT corresponds to ViT-L-16 and BiT corresponds to BiT-M-R101x3 for CIFAR-10 and CIFAR-100 and BiT-M-R152x4 for ImageNet.
ResNet corresponds to ResNet-164.

CIFAR-10
α1 α2 Robust Acc ViT Robust Acc CNN Average Robust Acc

ViT/BiT 0.5 0.5 94.9% 0.1% 47.5%
ViT/BiT 0.9998 2.00E-04 27.3% 24.7% 26.0%
ViT/ResNet 0.5 0.5 7.3% 38.3% 22.8%
ViT/ResNet 0.01 0.99 15.1% 14.8% 15.0%

CIFAR-100
α1 α2 Robust Acc ViT Robust Acc CNN Average Robust Acc

ViT/BiT 0.5 0.5 3.7% 48.9% 26.3%
ViT/BiT 0.9985 0.0015 16.7% 14.5% 15.6%

ImageNet
α1 α2 Robust Acc ViT Robust Acc CNN Average Robust Acc

ViT/BiT 0.5 0.5 56.7% 0.2% 28.5%
ViT/BiT 0.99 0.01 13.3% 12.0% 12.7%

transfer attacks where the choice of architecture was trivial,
initial experiments show that Vision Transformers mandate
a careful choice of synthetic model S. By merely using Vi-
sion Transformers in a defense, the transfer based attacker
is put at a new disadvantage. It is left to future work to ex-
plore this concept in-depth, as this poses an interesting new
challenge for black-box attack design.

E. Discussion on White-Box and Transfer At-
tacks on the Vision Transformer

The Vision Transformer as reported in [12] is an
encoder-based architecture. This architecture is an adapta-
tion of the transformer architecture popular in Natural Lan-
guage Processing applications. While the original trans-
former from Vaswani et al. [35] used both encoders and
decoders for sequence-to-sequence applications, the Vision

Transformer is purely encoder-based. The input image to be
fed to the transformer is divided into equally-sized patches,
which are sequentially passed through an embedding layer.
Positional encoding is added to the embedding vector feed-
ing to a layer of encoders. The output dimension of each
encoder matches the input dimension, which makes it easy
to stack these encoders. The output from the last encoder is
fed to a linear network layer acting as a classifier.

The building blocks of an encoder are the Attention net-
work, followed by Batch Normalization with skip connec-
tions. Many attention blocks are used in parallel (similar
to feature maps in CNNs), which are referred to as the
“multi-headed self-attention network”. The self-attention
block uses three linear networks of query, key and value
parametrized by Wk, Wq , and Wv matrices. The query and
the key correspond to the positions of the input patches in
imageX for which we are interested in computing the atten-



Table 7. RayS attack on single classifiers for CIFAR-10 and ImageNet. The robust accuracy for each model is reported in the table.
RayS CIFAR-10

ResNet-56 0.8%
ResNet-164 0.0%
ViT-B-16 8.2%
ViT-B-32 11.1%
ViT-L-16 14.5%
R50-ViT-B-16 22.9%
BiT-M-R50x1 0.9%
BiT-M-R101x3 3.7%

RayS ImageNet
ResNet-50 3.1%
ResNet-152 2.7%
ViT-B-16-224 1.6%
ViT-L-16 25.9%
ViT-L-16-224 3.3%
BiT-M-R50x1 3.1%

Table 8. Results of CIFAR-10 hyperparameter experiments for transfer attacks using different strength attacks and different synthetic
models.

Defense Model Synthetic Model Attack Strength Robust Acc
ViT-B-16 VGG-16 10.0% 79.9%
ViT-B-16 VGG-16 100.0% 46.8%
ViT-L-16 VGG-16 10.0% 84.4%
ViT-L-16 ViT-B-32 10.0% 92.4%
ViT-L-16 ViT-B-32 (ImageNet-21K) 10.0% 53.0%
ResNet-56 VGG-16 10.0% 22.6%
ResNet-56 VGG-16 100.0% 4.8%
BiT-M-R101x3 VGG-16 10.0% 66.1%

tion with respect to each other. Once we have computed the
self-attention of the entire input set, we turn it into a proba-
bility distribution by the Softmax function. An encoder uses
multiple attention computations in parallel, where each at-
tention block is referred to as an attention head. Let N be
the number of p x p patches in an n x m image, and e be
the embedding size for each patch, then the positionally en-
coded input to the encoder is:

Xp = X + P (18)

where X , P ∈ RN×e, and P is the positional encoding for
the image patches. The computation for each attention head
i in terms of key, query and value networks can be described
as:

Ki = XpWk,i (19)
Qi = XpWq,i (20)
Vi = XpWv,i (21)

The self-attention Ai in an attention head i with nh number
of heads is computed as:

Ai = [softmax(QiK
T
i )/nh]Vi (22)

The output from all attention heads is concatenated and
passed through a linear layer parameterized by Wo, as
shown below:

MA = [concati∈nh
[Ai]]Wo + bo (23)

In a transformer, the multi-headed self-attention passes
through a Batch Normalization layer with the input being
added to the output of Batch Normalization in a ResNet-like
manner. It then passes through a linear and another batch
normalization layer. Thus, the output of the first encoder
Enc as a function of the position encoded input, Xp, can be
described as:

Enc(Xp) = batchnorm([[batchnorm(MA)+

Xp]Wl + bl]) + [batchnorm(MA) +Xp] (24)

where Wl and bl are the parameters of the linear network
of the encoder. After passing the input through a series of
encoders, a classifier is connected to the last output of the
final encoder, as:

y = Classifier(Enc(. . . Enc(Xp) . . .)) (25)
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Figure 6. Black-box transfer attack hyperparameter experimental results for CIFAR-10. The text in red on top of the bars indicates the
strength of the attack (what percent of the training data is available to the adversary). The bars themselves represent the robust accuracy
of the model under attack. The horizontal text represents the type of synthetic model S, used in the attack. The vertical text represents the
model being attacked. This experiment is important because it indicates which type of synthetic model works best when doing the actual
attack.

For any differentiable loss function L, operating on the
output of the transformer as given by Equation 25, the com-
putation of ∂L/∂x = ∇x(L) requires that all components
of Equation 25 be differentiable with respect to the input
x. Since Equations 19 - 24 that contribute to Equation 25
including the Batch Normalization are all closed-form dif-
ferentiable with respect to position encoded input Xp, and
sinceXp is a simple function of x,∇x(L) can be computed.
Thus an adversarial image can be efficiently created using a
white-box attack formulation. We confirm this empirically,
as all white-box attacks successfully compromise the clas-
sifier accuracies, resulting in zero robust accuracy for many
white-box attacks.

E.1. Transfer Attacks

From a black box adversarial robustness point of view,
one category of attacks is referred to as transfer attacks.
Here a new network model is created (referred to as the syn-
thetic model) and trained either on the same dataset as the
model under attack, or creating training data from querying
the input-output behavior of the target model. One funda-
mental question to ask is how the transformer-based models
behave with respect to transfer attacks from a CNN-based
synthetic model and vice versa. An equivalency of the trans-
former model with the CNN based models under some sim-
plified assumptions was presented in [9]. The multi-headed
attention at pixel q for attention head h is expressed as (this
is similar to our development in equation 23):

MA(X)q,: =
∑

h∈[Nh]

(
∑
k

softmax(Ah
q,:)kXk,:

)W (h)+bout

(26)

For the h-th attention head, the attention probability is one
when k = q − f(h) and zero otherwise. The layer’s output
at pixel q is then shown to be equal to:

MA(X)q =
∑

h∈[Nh]

Xq−f(h),:W
(h) + bout (27)

The above can be seen to be equivalent to the convolution
operation. The development in [9] as shown above demon-
strates an equivalence in the transformer and the CNN. Here
we mean equivalence in the sense that the transformer can
equivalently perform a k × k convolution if an appropriate
value matrix Wv is chosen in an attention head. Whether a
transformer actually learns the appropriate Wv to perform
the equivalent convolution in practice is difficult to deter-
mine. In the following subsection we seek to partially an-
swer this question. We do this through a series of empirical
experiments, where we study the decision regions created
by transformers and CNNs.

E.2. Decision Region Graphs

One way to visually comprehend the transferability be-
tween different models is to examine their decision region
graphs. A decision region graph is a visual representation of
the different classification regions of a model using a color
coded 2-D graph. Decision region graphs for CNNs trained
on ImageNet were originally shown in [22].

For every dataset and model in this paper, we construct
the decision region graph. Formally, we can describe the
generation of the graph as follows: Each graph is con-
structed with respect to a single image I . For every model,
we use the same image I to build the graph (i.e. we use
sample 49443 from the validation set of ImageNet). Every



point on the graph corresponds to a class label for the given
image. The origin (x = 0, y = 0) corresponds to the orig-
inal (unperturbed) image. Outside the origin, the image is
perturbed according to the following equation:

I ′ = I + x · g + y · r (28)

where I ′ represents the new perturbed image, I represents
the original image, g represents the gradient of the image
with respect to the loss function of the model, and r rep-
resents a random noise orthogonal to g. In Equation 28, x
and y represent coordinates on the graph which control the
magnitude of the adversarial noise g and random noise r.

The decision region graphs may be slightly difficult to
grasp at first but it comes with a natural intuitive explana-
tion. The origin of the graph represents the unperturbed
image I with the correct class label. As we move in the
x direction on the graph, we increase the magnitude of the
adversarial noise g that is added to I . This is analogous
to an FGSM attack using I in which we keep increasing
the size of the step (ε in Equation 10). As we move in the
y direction on the graph, this represents adding more and
more random noise to I . When we move in both the x and
y directions, it represents a combination of adding random
noise and adversarial noise to the image. The last compo-
nent of the graph, color, represents the class label that the
model produces based on the perturbed input I ′. Essen-
tially, a decision region graph gives intuition about how the
model classifies images that are noisy and adversarial. The
decision region graphs for CIFAR-10, CIFAR-100 and Im-
ageNet are shown in Figures 7, 8 and 9.

Decision Region Graph Analysis: In Figure 7, the cor-
rect class label is represented by the color red. As we can
see at the origin, all models correctly classify the sample. It
can be noted that for the ResNets (ResNet-56 and ResNet-
164), their robustness is quite limited. We can see for both
these models there is only a small red sphere around the ori-
gin. As we move to larger and larger perturbations, the im-
age quickly becomes misclassified (the blue regions). For
the Vision Transformers and Big Transfer Models, we can
see that they are much more tolerant of noise. For exam-
ple, if we consider moving along the y axis (adding random
noise), none of the Vision Transformers misclassify the im-
age.

For Figures 8 and 9, we can see a similar trend applies.
In Figure 8, light blue represents the correct class label
and in Figure 9, dark blue represents the correct class la-
bel. In general, for both these figures we see the Vision
Transformers tend to handle random noise well (see along
the y axis) and the ResNets are very sensitive to perturba-
tions. It should also be noted in Figure 9, the graph for
BiT-M-R152x4 is completely dark blue. This means that
despite large perturbations, the model never fails to cor-
rectly classify the image I . This should not be completely

surprising as BiT-M-R152x4 is one of the most complex
models (in terms of number of parameters) that we exper-
iment with. We mention complexity because it has been
previously noted that model complexity alone helps thwart
adversarial attacks [24].

There is one other important take away, the landscape of
the decision regions themselves are very different between
model genuses. In Figure 7, for the ResNet models we can
see a small sphere of red surrounded by blue, while for the
Vision Transformers we can see large red regions around the
y axis and large light blue regions as we move in the x direc-
tion. While we cannot directly make conjectures based on
visualizations, the graphs do tend to support our main find-
ings. Specifically, we know from the results in Table 2 that
the transferability between different models genuses is low.
The decision region graphs lend credence to this claim by
visually showing that the decisions regions between Vision
Transformers, ResNets and Big Transfer Models do indeed
look very different. Thus, we conjecture that even though
a Vision Transformer is capable of implementing convolu-
tions as described in [9], in practice we observe that this
may not be the case due to differing patterns of decision
boundaries.

F. Friendly Adversarial Training Defense for
Vision Transformers

Friendly Adversarial Training (FAT) [38] was proposed
to improve the adversarial defense of deep networks. It is
a simple training technique that uses less strong adversar-
ial examples by employing an early stopping of the PGD
algorithm. By incorporating another parameter, τ , in the
PGD k-step algorithm (referred to as PGD-K-τ ), the step
amount τ by which the adversarial example crosses the de-
cision boundary can be easily controlled. The pseudocode
for the FAT algorithm [38] is described below:

while K > 0 do

if arg maxi f(x̃) 6= y and τ = 0 then

break

else if arg maxi f(x̃) 6= y then

τ ←− τ − 1

end if

x̃←− P (α sign(∇x̃l(f(x̃), y)) + x̃)

K ←− K − 1

end while

where arg maxif(x̃) outputs the predicted label of the
adversarial sample x̃, and f(x̃) = (f i(x̃))>i=0,...,C−1 gives
the probabilistic predictions over C classes. From the pseu-
docode it can be seen that, if K = τ , the PGD-K-τ al-
gorithm becomes equivalent to the standard PGD k-step



Figure 7. Vision Transformer, Big Transfer Model and ResNet decision regions for CIFAR-10.

Figure 8. Vision Transformer, Big Transfer Model and ResNet decision regions for CIFAR-100.

algorithm. The application of FAT for creating an adver-
sarial defense for ResNets had a slightly better robust ac-
curacy than e.g., Madry training, and a relatively lower
drop in clean accuracy [38]. For example, with FAT on
the Wide ResNet WRN-30-10, the clean accuracy dropped
from ≈ 95% to ≈ 89% as reported in [38], resulting in a

robust accuracy of ≈ 46% when the PGD-20 attack was
used.

We evaluate the performance of different transformer-
based networks for different values of τ . The results are
presented in Table 9. From Table 9, it can be seen that the
adversarial robustness of the Vision Transformers with re-



Figure 9. Vision Transformer, Big Transfer Model and ResNet decision regions for ImageNet.

spect to FAT is similar to the ResNet-based architectures.
For CIFAR-10, it can be seen that the ViT-L-16 attains a

clean accuracy of 99.1%, the highest of the models listed in
Table 9. When utilizing FAT as a defense, the clean accu-
racy of ViT-L-16 drops to 94.2% for τ = 1; the strongest at-
tack, APGD, produces a robust accuracy of just 19.6%. For
τ = 10, the clean accuracy of ViT-L-16 drops to 85.3%; the
robust accuracy of APGD approximately doubles to 33.6%.
For the ViT-B-32, a clean accuracy of 98.6% was obtained
for CIFAR-10. The implementation of FAT dropped the
clean accuracy to 93.2% for τ = 1; APGD is very suc-
cessful here, producing a robust accuracy of just 5.9%. For
τ = 10, the clean accuracy of the ViT-B-32 is 78.9%; the
robust accuracy of APGD rises to 29.4%.

Considering CIFAR-100, the ViT-L-16 in Table 9 attains
a clean accuracy of 94.0%. Using FAT, the clean accuracy
drops to 83.0% for τ = 1, and APGD produces a robust
accuracy of 6.7%. For τ = 10, the clean accuracy of ViT-
L-16 further drops to 64.1%; the robust accuracy of APGD
increases to 15.3%. Finally, for the ViT-B-32, a clean ac-
curacy of 91.7% was obtained for CIFAR-100. Implement-
ing FAT reduced the clean accuracy to 81.3% for τ = 1;
here, APGD produces an extremely low robust accuracy of
2.9%. For τ = 10, the clean accuracy of the ViT-B-32 is
just 58.6%, while the robust accuracy of APGD increases
to 18.3%.

G. Additional Tables And Codes
In this section, we provide full numerical tables for some

of the charts and figures presented in our paper. Each table

is captioned with a description of the corresponding portion
of the main paper.

We also provide code and the trained models to replicate
our results. Code for the ViT/BiT defense, the RayS attack,
Adaptive attack and SAGA for CIFAR-10 can be found on
Github: https://github.com/MetaMain/ViTRobust.

https://github.com/MetaMain/ViTRobust


Table 9. FAT defense accuracy for ViT-B-32, ViT-B-16, ViT-L-16, and ResNet-164 architectures on CIFAR-10 and CIFAR-100. The
leftmost column in the table lists the model being tested; each model includes a subset of τ parameters for τ = 0, 1, 2, 10. The top row in
the table lists the attacks run, from FGSM to APGD. The last column in the table lists the clean accuracy of the tested model.

CIFAR-10
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-32 37.9% 1.8% 17.6% 4.4% 0.0% 0.0% 98.6%
τ = 0 30.8% 17.5% 14.5% 17.3% 1.5% 1.5% 95.5%
τ = 1 33.9% 32.2% 16.4% 23.6% 9.7% 5.9% 93.2%
τ = 2 37.8% 40.3% 23.6% 31.4% 20.8% 13.9% 90.8%
τ = 10 42.6% 51.1% 33.3% 38.8% 34.1% 29.4% 78.9%

ViT-B-16 39.5% 0.0% 20.3% 0.3% 0.0% 0.0% 98.9%
τ = 0 42.3% 34.0% 19.2% 29.0% 9.4% 4.1% 95.9%
τ = 1 43.2% 41.1% 26.3% 33.7% 19.3% 13.7% 93.8%
τ = 2 62.3% 25.4% 33.9% 25.1% 6.7% 5.4% 93.8%
τ = 10 43.1% 52.3% 36.8% 40.2% 35.0% 33.7% 73.3%

ViT-L-16 56.3% 1.2% 28.70% 5.9% 0.0% 0.0% 99.1%
τ = 0 51.7% 43.6% 29.2% 39.3% 20.6% 15.4% 95.7%
τ = 1 49.1% 47.0% 31.9% 39.4% 26.8% 19.6% 94.2%
τ = 2 57.4% 48.8% 33.5% 40.2% 29.4% 21.8% 92.4%
τ = 10 49.5% 55.4% 33.7% 45.8% 37.7% 33.6% 85.3%

ResNet-164 14.4% 3.0% 9.0% 2.2% 0.1% 0.0% 93.2%
τ = 0 47.7% 50.8% 39.5% 42.5% 34.6% 27.0% 90.3%
τ = 1 53.0% 56.2% 47.2% 49.0% 42.7% 34.4% 88.0%
τ = 2 56.2% 61.3% 50.0% 51.9% 46.9% 37.8% 86.4%
τ = 10 60.4% 64.8% 55.6% 57.6% 51.9% 44.5% 79.9%

CIFAR-100
FGSM PGD BPDA MIM C&W APGD Acc

ViT-B-32 20.8% 1.9% 13.4% 3.1% 0.0% 0.0% 91.7%
τ = 0 16.2% 6.9% 9.7% 7.6% 0.7% 1.2% 87.6%
τ = 1 21.6% 16.5% 9.3% 12.8% 5.2% 2.9% 81.3%
τ = 2 24.4% 23.0% 12.3% 17.5% 10.1% 5.4% 76.1%
τ = 10 26.4% 31.9% 20.5% 24.3% 20.1% 18.3% 58.6%

ViT-B-16 20.4% 0.0% 11.9% 0.5% 0.0% 0.0% 92.8%
τ = 0 16.6% 8.0% 7.6% 7.5% 0.5% 0.3% 87.5%
τ = 1 23.9% 20.0% 9.3% 15.7% 8.5% 4.8% 82.0%
τ = 2 26.0% 25.0% 12.8% 18.4% 13.3% 8.4% 77.0%
τ = 10 25.1% 29.0% 20.4% 22.7% 16.5% 16.1% 54.2%

ViT-L-16 33.0% 1.6% 15.1% 4.7% 0.0% 0.0% 94.0%
τ = 0 28.6% 19.1% 13.1% 17.7% 5.3% 5.2% 87.7%
τ = 1 27.7% 22.6% 14.3% 18.1% 11.4% 6.7% 83.0%
τ = 2 30.2% 26.5% 16.7% 22.0% 16.0% 9.7% 80.0%
τ = 10 31.4% 32.0% 23.0% 24.0% 20.2% 15.3% 64.1%

ResNet-164 7.6% 0.3% 3.7% 0.9% 0.0% 0.0% 74.2%
τ = 0 18.2% 16.1% 13.5% 12.2% 9.7% 6.8% 70.8%
τ = 1 23.5% 24.4% 19.3% 18.4% 17.3% 10.7% 66.8%
τ = 2 35.3% 32.3% 25.2% 26.3% 24.7% 17.6% 61.8%
τ = 10 45.6% 43.2% 34.5% 35.7% 28.9% 27.2% 55.0%



Table 10. Full transferability results for CIFAR-10. The first column in each table represents the model used to generate the adversarial
examples, Ci. The top row in each table represents the model used to evaluate the adversarial examples, Cj . Each entry represents 1− ti,j
(the robust accuracy) computed using equation 3 with Ci, Cj and either FGSM, PGD or MIM. For PGD and MIM we use only 10 steps
to avoid overfitting the example to a particular model. Based on these results we take the maximum transferability across all attacks and
report the result in Table 2. We also visually show the maximum transferability ti,j in figure 1.

FGSM
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT-B-16 BiT-M-R50x1 BiT-M-R101x3 ResNet-56 ResNet-164

ViT-B-32 43.4% 55.3% 61.1% 76.6% 67.7% 68.9% 83.3% 83.3%
ViT-B-16 68.7% 41.3% 56.9% 80.3% 73.0% 73.7% 86.1% 86.0%
ViT-L-16 74.8% 61.6% 59.5% 82.7% 78.5% 80.1% 88.5% 88.5%
R50-ViT-B-16 82.6% 75.9% 79.9% 51.4% 72.2% 74.1% 81.9% 82.0%
BiT-M-R50x1 96.0% 94.0% 95.9% 95.6% 69.5% 86.0% 94.0% 93.8%
BiT-M-R101x3 97.4% 94.4% 86.3% 96.2% 86.1% 88.0% 95.5% 94.7%
ResNet-56 93.4% 92.4% 94.7% 91.2% 82.0% 91.2% 41.9% 43.0%
ResNet-164 93.2% 92.4% 95.3% 90.9% 82.9% 91.7% 45.1% 47.1%

PGD
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT-B-16 BiT-M-R50x1 BiT-M-R101x3 ResNet-56 ResNet-164

ViT-B-32 4.2% 49.1% 72.2% 93.4% 70.4% 74.3% 93.0% 92.9%
ViT-B-16 90.4% 0.4% 53.9% 97.1% 83.3% 85.1% 96.1% 95.9%
ViT-L-16 85.9% 32.4% 10.4% 94.4% 82.1% 81.7% 95.7% 95.5%
R50-ViT-B-16 93.7% 84.5% 91.3% 6.6% 69.7% 75.3% 90.3% 88.9%
BiT-M-R101x3 99.6% 97.5% 86.3% 98.7% 58.0% 0.0% 97.3% 96.8%
BiT-M-R50x1 99.9% 98.5% 99.4% 99.5% 0.0% 85.9% 98.2% 97.8%
ResNet-56 99.0% 97.9% 98.6% 98.4% 93.9% 96.9% 28.0% 28.7%
ResNet-164 98.7% 98.3% 99.1% 98.1% 92.6% 96.1% 28.7% 32.5%

MIM
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT-B-16 BiT-M-R50x1 BiT-M-R101x3 ResNet-56 ResNet-164

ViT-B-32 4.9% 15.9% 24.5% 65.1% 39.2% 38.0% 81.4% 80.1%
ViT-B-16 42.9% 0.9% 11.1% 77.4% 56.6% 55.0% 86.9% 86.0%
ViT-L-16 44.4% 21.6% 13.4% 69.7% 57.5% 55.3% 87.0% 85.2%
R50-ViT-B-16 60.4% 41.9% 48.5% 1.7% 39.0% 42.0% 73.3% 71.0%
BiT-M-R50x1 95.5% 89.1% 94.3% 95.3% 0.0% 48.6% 93.0% 91.0%
BiT-M-R101x3 91.4% 79.7% 88.0% 92.8% 24.1% 0.1% 92.2% 90.7%
ResNet-56 94.2% 91.0% 94.8% 90.3% 77.5% 88.2% 14.1% 12.8%
ResNet-164 94.2% 91.9% 95.0% 90.3% 77.7% 88.8% 16.4% 14.3%



Table 11. Full transferability results for CIFAR-100. The first column in each table represents the model used to generate the adversarial
examples, Ci. The top row in each table represents the model used to evaluate the adversarial examples, Cj . Each entry represents 1− ti,j
(the robust accuracy) computed using equation 3 with Ci, Cj and either FGSM, PGD or MIM. For PGD and MIM we use only 10 steps to
avoid overfitting the example to a paticular model. Based on these results we take the maximum transferability across all attacks and report
the result in Table 2.

FGSM
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT-B-16 BiT-M-R50x1 BiT-M-R101x3 ResNet-56 ResNet-164

ViT-B-32 27.9% 40.2% 41.7% 59.2% 55.8% 57.4% 85.1% 86.0%
ViT-B-16 50.7% 25.3% 36.7% 64.9% 61.4% 59.9% 91.0% 92.5%
ViT-L-16 57.0% 41.7% 37.8% 65.7% 64.7% 65.1% 90.1% 90.5%
R50-ViT-B-16 66.3% 60.6% 64.3% 30.8% 56.1% 61.2% 90.8% 91.4%
BiT-M-R50x1 87.3% 83.1% 87.2% 86.0% 44.5% 68.8% 96.3% 96.6%
BiT-M-R101x3 85.5% 83.3% 85.8% 86.4% 70.4% 67.0% 96.2% 97.8%
ResNet-56 79.9% 77.8% 84.7% 77.3% 68.6% 78.1% 38.0% 40.8%
ResNet-164 77.9% 75.5% 84.5% 75.8% 64.9% 75.7% 36.1% 33.2%

PGD
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT-B-16 BiT-M-R50x1 BiT-M-R101x3 ResNet-56 ResNet-164

ViT-B-32 3.8% 36.4% 53.5% 80.9% 67.7% 68.5% 93.3% 95.0%
ViT-B-16 78.6% 0.7% 36.1% 90.3% 78.9% 80.2% 97.2% 97.6%
ViT-L-16 72.2% 17.9% 5.8% 85.0% 76.6% 75.2% 96.1% 96.2%
R50-ViT-B-16 85.6% 75.5% 82.3% 2.2% 62.7% 68.5% 94.3% 95.3%
BiT-M-R50x1 96.1% 94.7% 97.8% 96.1% 0.0% 76.9% 97.5% 98.7%
BiT-M-R101x3 94.8% 91.7% 95.2% 94.1% 52.3% 1.0% 97.9% 97.9%
ResNet-56 91.6% 91.0% 94.5% 89.4% 82.0% 89.9% 51.2% 56.6%
ResNet-164 89.2% 89.0% 92.8% 88.5% 78.4% 85.7% 43.6% 39.4%

MIM
ViT-B-32 ViT-B-16 ViT-L-16 R50-ViT-B-16 BiT-M-R50x1 BiT-M-R101x3 ResNet-56 ResNet-164

ViT-B-32 4.4% 11.5% 16.4% 47.8% 39.5% 38.9% 86.1% 87.4%
ViT-B-16 28.7% 0.9% 6.8% 61.4% 55.5% 52.1% 91.4% 93.3%
ViT-L-16 32.2% 11.7% 7.5% 51.9% 52.4% 50.0% 91.3% 90.5%
R50-ViT-B-16 48.4% 35.0% 37.7% 1.1% 35.9% 38.8% 89.0% 90.1%
BiT-M-R50x1 82.3% 75.0% 84.5% 81.8% 0.1% 43.5% 95.1% 94.8%
BiT-M-R101x3 75.1% 61.0% 73.7% 76.5% 26.0% 1.2% 94.3% 96.8%
ResNet-56 81.4% 80.5% 86.4% 78.9% 69.3% 79.5% 29.2% 31.1%
ResNet-164 78.3% 77.2% 84.8% 76.5% 64.1% 73.5% 25.5% 20.8%



Table 12. Full transferability results for ImageNet. The first column in each table represents the model used to generate the adversarial
examples, Ci. The top row in each table represents the model used to evaluate the adversarial examples, Cj . Each entry represents 1− ti,j
(the robust accuracy) computed using equation 3 with Ci, Cj and either FGSM, PGD or MIM. For PGD and MIM we use only 10 steps to
avoid overfitting the example to a paticular model. Based on these results we take the maximum transferability across all attacks and report
the result in Table 2. Note due to the complexity of training ImageNet models we do not train independent copies of the model to measure
self-transferability (when i = j).

FGSM
ViT-B-16 ViT-L-16 (224) ViT-L-16 (512) BiT-M-R50x1 BiT-M-R152x4 ResNet-50 ResNet-152

ViT-B-16 + 40.8% 67.3% 63.2% 73.2% 56.0% 63.6%
ViT-L-16 (224) 40.1% + 59.6% 63.7% 75.4% 57.6% 61.7%
ViT-L-16 (512) 77.8% 69.3% + 74.6% 77.7% 74.5% 78.4%
BiT-M-R50x1 90.6% 91.6% 89.4% + 83.3% 81.2% 83.5%
BiT-M-R152x4 93.0% 93.9% 89.8% 83.4% + 86.8% 90.1%
ResNet-50 77.8% 82.3% 79.1% 61.6% 79.2% + 46.7%
ResNet-152 75.6% 78.8% 77.9% 61.0% 78.1% 40.7% +

PGD
ViT-B-16 ViT-L-16 (224) ViT-L-16 (512) BiT-M-R50x1 BiT-M-R152x4 ResNet-50 ResNet-152

ViT-B-16 + 36.1% 81.1% 83.1% 89.7% 79.0% 81.7%
ViT-L-16 (224) 22.7% + 62.6% 83.2% 88.8% 80.4% 80.6%
ViT-L-16 (512) 89.6% 83.5% + 84.3% 87.6% 87.6% 89.9%
BiT-M-R50x1 96.5% 96.8% 95.8% + 90.6% 89.2% 91.4%
BiT-M-R152x4 91.8% 97.3% 94.2% 85.4% + 93.0% 95.2%
ResNet-50 92.7% 94.2% 91.8% 77.8% 92.7% + 42.2%
ResNet-152 91.1% 93.3% 90.5% 77.4% 90.9% 30.1% +

MIM
ViT-B-16 ViT-L-16 (224) ViT-L-16 (512) BiT-M-R50x1 BiT-M-R152x4 ResNet-50 ResNet-152

ViT-B-16 + 10.9% 60.4% 59.2% 72.6% 56.6% 59.9%
ViT-L-16 (224) 9.1% + 35.5% 60.0% 73.1% 56.3% 59.2%
ViT-L-16 (512) 72.0% 56.6% + 65.7% 73.7% 71.6% 76.8%
BiT-M-R50x1 90.2% 91.6% 88.2% + 75.1% 75.3% 81.3%
BiT-M-R152x4 96.2% 92.4% 86.5% 72.0% + 84.9% 88.0%
ResNet-50 76.2% 81.2% 75.3% 44.7% 75.6% + 13.3%
ResNet-152 74.1% 77.9% 73.4% 45.9% 73.2% 10.6% +


