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In this supplementary material we provide additional de-
tails about:

• Video (with audio) for qualitative assessment of our task
setup and agent’s performance (Sec. 1), as referenced
in ‘3D Environment and Audio-Visual Simulator’ of
Sec. 3 in the main paper.

• Noisy audio experiment for the far-target task (Sec. 2).

• Experiment to show the effect of the minimum inter-
source distance on separation quality (Sec. 3), as noted
in Sec. 5.2 of the main paper.

• Experiment to demonstrate the importance of the com-
posite policy for far-target separation (Sec. 4), as men-
tioned in Sec. 5.2 of the main paper.

• Experiment to show how the separation quality varies
across all possible type of configurations of combining
the target and the distractor sources. (Sec. 5), as noted
in Sec. 5.2 of the main paper.

• Experiment to show how our Move2Hear approach
maintains its benefits even when using a SOTA passive
audio separation backbone (Sec. 6), as noted in Sec. 5.2
of the main paper.

• Experiment to show the effect of using waveform-level
audio quality metrics like SNR as the RL reward on the
separation performance (Sec. 7).

• Experiment to show how audio-visual navigation with
distractor sources benefits from active audio-visual
source separation (Sec. 8) as mentioned in Sec. 5.2
in the main paper.

• Evaluation metric definitions for evaluating source sep-
aration quality (Sec. 9).

• Additional baseline details for reproducibility (Sec. 10).

• Implementation details (Sec. 11), as noted in ‘Experi-
mental Setup’ of Sec. 5 in the main paper.
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Figure 1: Models’ robustness for various levels of noise in audio
for far-target. Higher SI-SDR is better.

1. Supplementary Video

The supplementary video, available at http://
vision.cs.utexas.edu/projects/move2hear,
demonstrates the Active Audio-Visual Source Separation
task with the SoundSpaces [3] audio simulation setup and
shows the comparison between our proposed model and the
baselines as well as qualitative results for both near-target
and far-target. Please listen with headphones to hear the
binaural audio correctly.

2. Noisy Audio for Far-Target

In the main paper submission we tested our model’s
robustness against standard microphone noise [23, 22] in the
near-target task setup (see Fig. 4 in main). Here, we show
the parallel experiment for the far-target (heard sounds) task
setup. Fig. 1 shows the results. Our model is able to maintain
its performance gain in the far-target setup over all other
models even for very high levels of noise. In addition, we
see that as in the case of near-target, our acoustic memory
refiner module fR again plays an important role in providing
additional robustness against noisy audio; all models perform
worse without it.

http://vision.cs.utexas.edu/projects/move2hear
http://vision.cs.utexas.edu/projects/move2hear
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Figure 2: Models’ robustness to various inter-source distances.
Higher SI-SDR is better.

3. Minimum Inter-Source Distance
We investigate the effect of the minimum inter-source

distance ( ‘Experimental Setup’ in Sec. 5 in main) on the
separation performance of our model. This minimum dis-
tance is applied to all audio source pairs in every episode.
Fig. 2 shows the results with heard sounds.

For both settings, our Move2Hear model outperforms all
baselines by a significant margin. This shows that even in
the challenging setting where the target and the distractor
are quite close to each other (i.e., the maneuverability space
around the target is reduced and the clash between the sounds
of the target and the nearby distractor can be high), our
model can still actively move around to effectively improve
its separation quality.

4. Importance of Composite Policy
Our composite policy switches control between the nav-

igation policy πN and the quality policy πQ based on the
policy switch time T N , where T N is selected based on per-
formance in the validation split. Inspired by recent work
in composite policy blending for complex multi-task robot
learning [1, 5, 9, 19], this approach helps the agent deal with
the challenges posed by the far-target task. When the agent is
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Figure 3: Effect of policy switch time in composite policy on
separation performance for far-target.

Heard Unheard
Model SPL (↑) SR (↑) SPL (↑) SR (↑)

Random 3.1 6.4 3.1 6.4
Move Forward 1.1 1.1 1.1 1.1

Speaker-Target
Gan et al. [6] 5.2 12.3 4.3 10.3
AV Navigator [3] 33.5 49.1 32.4 47.0
Move2Hear [πN + Stop] (Ours) 56.0 70.0 51.4 66.0

Standard Split
Gan et al. [6] 4.3 10.0 4.9 11.1
AV Navigator [3] 0.9 1.5 1.1 1.6
Move2Hear [πN + Stop] (Ours) 54.9 70.3 52.2 68.5

Table 1: Audio-visual navigation with distractors. Higher SPL and
SR are better.

too far from the target audio location, the audio signal could
be too weak and unreliable for πQ to perform reasonably.
Hence, πN brings the agent to an area with a stronger signal
and then passes control to πQ, which is expert in moving to
improve M̈G.

Fig. 3 shows Move2Hear’s separation performance on the
validation data for different values of the policy switch time
T N in the far-target and heard setting. Switching over from
the navigation policy πN to the quality improvement policy
πQ very early negatively affects our model’s performance
as it does not allow the agent to be close enough to the
source for πQ to make successful fine-grained movements
for further improvement in separation quality. On the other
hand, if there is no switching at all (T N = 100) , the agent
suffers from not leveraging πQ’s ability to take it to “sweet
spots” in the vicinity of the target where the target audio can
be separated even better. Overall, the composite policy is
beneficial for best results, and we see the model is not overly
sensitive to the switch point.

5. Separation in Different Scenarios



Separating speech (S) from a mixture of speeches is the
most difficult, and extracting music (M) from background
(B) is the easiest for Move2Hear and two of our strongest
baselines in the near-target scenario, Novelty [2] and Prox-
imity Prior. For the SI-SDR scores, refer to Table 2.

Model S vs. S S vs. M S vs. B M vs. B

H
ea

rd Proximity Prior 3.42 5.07 3.38 6.82
Novelty [2] 3.56 4.84 3.85 5.83
Move2Hear (Ours) 4.04 5.50 4.58 6.95

U
nh

ea
rd Proximity Prior 2.53 2.78 2.69 3.36

Novelty [2] 2.82 3.19 3.25 3.82
Move2Hear (Ours) 3.08 3.31 3.60 4.15

Table 2: SI-SDR performance in different separation scenarios on
near-target.

6. Comparison with SOTA passive separation
model.

Passive audio(-visual) separation is distinct from AAViSS
in that it 1) assumes access to pre-recorded audio/video,
2) has no provision for sensor motion to improve separa-
tion, and 3) doesn’t extract the target latent (monaural) au-
dio (‘Passive Audio(-Visual) Source Separation’ of Sec. 2
in main). Furthermore, advances in passive audio separa-
tion models are orthogonal to our contribution. We demon-
strate this by replacing the audio network backbone with
the passive SOTA MMDenseNet [21] On SI-SDR and heard
(unheard) setting, our active model still outperforms Stand
In-Place in both near- and far-target settings (Table 3).

Near-Target Far-target
Model Heard Unheard Heard Unheard

Stand In-Place 7.10 4.43 3.45 1.90
Move2Hear (Ours) 7.98 5.38 6.84 4.57

Table 3: Effect of using a stronger model like MMDenseNet [21]
for passive separation on SI-SDR performance .

7. SNR as RL reward

In our approach, we used the source separation error in
the formulation of the agent’s reward. Here, we explore an
alternative option for the reward formulation by replacing the
separation error with SNR (signal to noise ratio) to capture
the improvement in quality of the waveform-level of the
separated audio. We find that this alternative RL reward
doesn’t improve the separation performance. On the contrary,
when using SNR as a reward with Move2Hear we see a
relative degradation in SI-SDR by 5.1% and 2.2% in near-
target and heard/unheard setting in comparison to the original
reward formulation. Further, SNR increases training time
by 2.2x due to the needed inverse-STFT calculations. Our
separation reward leads to better performance and faster
training.

8. Audio-visual Navigation with Distractors

While our main goal is source separation, we find that
as a byproduct, our model can benefit AV navigation in
the presence of cluttered sounds. Whereas existing models
trained to navigate to a source are naturally confused by
distractors, our πN navigation policy (augmented with a
Stop action) can successfully ignore them to more rapidly
find a target source. To illustrate this, we use the far-target
dataset and we compare our πN policy to the following
models in terms of navigation performance:

• Random: an agent that selects a random action at each
step.

• Move Forward: an agent that always moves forward
unless faced with an obstacle, then it turns right. This is
a common baseline employed in the visual navigation
literature [17, 3].

• AV Navigator [3]: this is the same baseline model we
used in the main paper for the far-target task but evalu-
ated here for navigation performance.

• Gan et al. [6]: this approach trains two supervised mod-
els using the binaural audio input, one for predicting the
target location and the other for predicting a Stop action.
During navigation, the method of Gan et al. [6] uses
egocentric depth images to build an occupancy map of
the environment and plans a path to the predicted loca-
tion using a metric planner. We set the target location
prediction frequency to every 20 steps of navigation on
the basis of validation.

All models are evaluated using standard navigation met-
rics: success rate (SR) and success rate weighted by path
length (SPL).

Table 1 shows the results. On the Standard Split when
the target and distractor types intersect, both [3] and [6] are
overwhelmed by the mixed audio and show poor navigation
performance. We observe that per-step prediction for the
Gan et al. model yields a very reactive navigation policy in
our setup, which leads to low navigation performance. On
an easier split where the target is always of speaker type and
the distractors are never other speakers (Speaker-Target), the
learned baselines fare better. However, our model outper-
forms all baselines by a substantial margin in both setups,
showing the positive impact of using separated audio for
navigation with distractor sounds.

9. Metric Definitions

Next we elaborate on the metric definitions ( ‘Evaluation’
of Sec. 5 in main).



1. STFT distance – The Euclidean distance between the
ground-truth and predicted complex monaural spectro-
grams,

D{STFT} = ||M̈G −MG||2.

2. SI-SDR [16] – We use a fast implementation from the
nussl [13] library to measure the source-to-distortion
ratio (SDR) of the predicted monaural waveforms in
dB in a scale-invariant (SI) manner.

10. Baselines
We provide the following additional details about the

baselines ( ‘Baselines’ of Sec. 5 in main) for reproducibility.

• DoA: To face the audio target, this agent starts rotating
to the right from its initial pose until it finds an orienta-
tion that allows it to move to a neighboring node. Once
it has moved to a neighboring node, it rotates twice to
face the agent and make its first prediction.

• Proximity Prior: Whenever this agent tries to cross
the boundary of the circle within which it is supposed
to stay, it is forced to randomly choose an action from
{TurnLeft, TurnRight} by the simulation platform.

• Novelty [2]: this agent is rewarded on the basis of
the novelty of states visited. Each valid node of the
SoundSpaces [3] grids is considered to be a unique
state. When an agent visits any such node, the count for
that state is incremented. The novelty reward is given
by:

rt =
1
√
ns
, (1)

where ns is the visitation count of state st.

• AV Navigator [3]: this navigation agent uses a visual
and an audio encoder for input feature representation
and an actor-critic policy network for predicting actions
to navigate to the target source. While the visual en-
coder takes RGB images as input, the audio encoder
takes the mixed binaural spectrogram concatenated with
the target class label as an extra channel as input. Thus,
the audio input space is the same as the input space of
fB ( ‘Binaural Audio Separator’ of Sec. 4.1 in main).
Following typical navigation rewards [3, 17], we re-
ward the agent with +10 if it succeeds in reaching the
target source and executing the Stop action there, plus
an additional reward of +0.25 for reducing the geodesic
distance to the target and an equivalent penalty for in-
creasing it. Finally, we issue a time penalty of -0.01 per
executed action to encourage efficiency.

11. Implementation Details
Next we provide further implementation details including

the network architecture details.

11.1. Monaural Audio Preprocessing

For all our experiments, we sample 1-second-long monau-
ral clips ( ‘Experimental Setup’ of Sec. 5 in main) at 16kHz
and ensure that the sampled clips have a higher average
power than the full audio clip that they are sampled from.
This helps us prevent the sampling of a large amount of
mostly silent raw audio data. The sampled waveforms are
further encoded using the standard 32-bit floating point for-
mat and normalized to have the same average power of 1.2
across the whole dataset.

11.2. Audio Spectrogram

To generate an audio spectrogram, we compute the Short-
Time Fourier Transform (STFT) with a Hann window of
length 63.9ms, hop length of 32ms, and FFT size of 1023.
This results in complex spectrograms of size 512× 32× C,
where C is the number of channels in the source audio (C
is 1 for monaural and 2 for binaural audio). For all experi-
ments, we take the magnitude of the spectrogram, compute
its natural logarithm after adding 1 to all its elements for
better contrast [7, 8], and reshape it to 32×32×16C by tak-
ing slices along the frequency dimension and concatenating
them channel-wise to improve training speed. For all cases
where the target audio class needs to be concatenated to the
spectrogram channel-wise, the concatenation is carried out
after slicing.

11.3. CNN Architecture Details

Binaural Audio Separator. The binaural audio separator
fB uses a U-Net style architecture [15] ( ‘Binaural Audio
Separator’ of Sec. 4.1 in main). The encoder of the net-
work has 5 convolution layers. Each convolution layer uses
a kernel size of 4, a stride of 2 and a padding of 1. It is
followed by a Batch Normalization [11] of 1e−5 and a leaky
ReLU [14, 20] activation with a negative slope of 0.2. The
number of output channels of the convolution layers are [64,
128, 256, 512, 512], respectively. The decoder consists of 5
transpose convolution layers and 1 convolution layer in the
end to resize the output from the transpose convolutions to
the desired spectrogram dimensions. Each transpose convo-
lution has a kernel size of 4, a stride of 2 and a padding of 1,
and is followed by a Batch Normalization [11] of 1e−5 and
a ReLU activation [14, 20]. The final convolution layer uses
a kernel size of 1 and a stride of 1.

Monaural Audio Predictor. The monaural audio predic-
tor fM uses the same architecture as fB .

Acoustic Memory Refiner. The acoustic memory refiner
fR is a CNN network with 2 convolution layers. Both con-
volutions use a kernel size of 3, a stride of 1 and a padding of



1. Additionally, the first convolution is followed by a Batch
Normalization [11] of 1e−5 and a ReLU activation [14, 20].

Visual Encoder. The visual encoder EV of Move2Hear
is a CNN with 3 convolution layers, where the convolution
kernel sizes are [8, 4, 3], the strides are [4, 2, 1] and the num-
ber of output channels are [32, 64, 32], respectively. Each
convolution layer has a ReLU activation [14, 20] function.
The convolution layers of the encoder are followed by 1 fully
connected layer with 512 output units. Note that the visual
encoders of the AV Navigator [3] and Novelty [2] baselines
share the same architecture.

Separated Binaural Encoder. Our separated binaural en-
coderEB uses the same architecture asEV , except for using
a kernel size of 2 in place of 3 for the third convolution.

Policy Network. The policy network for Move2Hear, as
well as for the AV Navigator [3] and Novelty [2] models,
uses a one-layer bidirectional GRU [4] with 512 hidden
units. The actor and the critic networks consist of one fully
connected layer.

Predicted Monaural Encoder. Our predicted monoaural
encoder EM uses the same architecture as EB .

We use the Kaiming-normal [10] weight initializa-
tion strategy for all weight initializations in the network
components (fB , fR, fM ) of the Target Audio Separator, all
feature encoders (EV , EB , EM ) of the Active Audio-Visual
Controller, and the visual encoder of the AV Navigator [3]
and Novelty [2] models.

11.4. Training Hyperparameters

We pretrain fB and fM by randomly sampling a max-
imum of 30K data samples per training scene ( Eq. 6 in
Sec. 4.3 in main). We optimize the loss functions LB (
Eq. 6 in Sec. 4.3 in main) and LM ( Eq. 7 in Sec. 4.3 in
main) by using Adam [12] and a learning rate of 5e−4 until
convergence.

To train the policies of Move2Hear, AV Navigator [3],
and Novelty [2] using PPO [18] ( ‘Training the Active Audio-
Visual Controller’ of Sec. 4.3 in main), we weight the action
loss by 1.0 and the value loss by 0.5. For πQ, we use an
entropy loss on the policy distribution with a coefficient of
0.01 while for all other policies, we set the coefficient to 0.2.
We train all policies with Adam [12] and a learning rate of
1e−4 for a total of 38 million policy prediction steps.
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