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1. Visualization Plots

Figure 1 and 2 show the comparison between our method
and different baselines where each circle indicates the per-
formance of one method. These figures illustrate better the
improvements gained by our method (dashed arrows).

2. Feature Space Visualization

Figure 3 shows the projection of the feature space us-
ing tSNE [7] on three different datasets with different input
modalities and views. For each dataset, we show the feature
space embedding without our joint optimization (i.e, only
the supervised loss) and with our joint optimization (i.e, ad-
ditionally utilizing the contrastive loss). Note how our ap-
proach reshapes the feature space by pushing the challeng-
ing scenarios to be closer so that they can benefit each other
as also shown in our quantitative results.

3. Effect of the Strength of the Contrastive
Loss

In Table 1 we show a study for the importance of the
contrastive loss (λ) used in our approach (Eq. (4)). Using a
small factor leads to small improvements on the challenging
scenarios as the force of reshaping the feature space is rather
weak. On the other hand, using a very large factor yields
worse results as the network focuses more on reshaping the
feature space and ignores the important cues for the actual
task which are learned from the supervised loss. Note that
this study is used only to show the effect of the weight of the
contrastive loss. In our main results, we use the validation
set to select the best value for λ.

4. More Qualitative Results

We provide more qualitative results from our approach
in Figure 4, Figure 5 and Figure 6 for the ETH-UYC,
nuScenes (bird’s-eye view) and nuScenes/Waymo (egocen-
tric view) datasets, respectively.

ETH-UCY (AVG)
All Top 3% Top 2% Top 1%

Traj++ EWTA (ours) 0.16/0.32 0.47/1.07 0.51/1.13 0.42/0.87
+ contrastive (λ = 20) 0.17/0.33 0.47/1.04 0.50/1.07 0.43/0.84
+ contrastive (λ = 50) 0.16/0.32 0.46/1.03 0.48/1.03 0.38/0.71
+ contrastive (λ = 100) 0.17/0.32 0.48/1.04 0.52/1.10 0.50/0.97

Table 1. Study of the hyper-parameter λ on the ETH-UCY dataset.
While small λ yields small improvement on the challenging sce-
narios, large λ yields larger errors on the challenging scenarios.

5. Detailed Quantitative Results

Table 2 show a detailed comparison between our method
and the resampling/reweighting baselines across all datasets
on all metrics and difficulties. This support our findings that
these baselines tend to bias the challenging cases (overfit-
ting) while our approach maintain the average performance
and improves largely on the challenging cases.

6. Baselines Implementation Details

In order to use state-of-the-art methods for long-tail clas-
sification, we map the regression task to a classification task
by assigning classes to training samples based on the error
of the Kalman filter. In particular, we group the errors into
bins and assign the same class to all samples in each bin. To
alleviate the issue of having classes with only one sample,
we group all samples with a score greater than a specific
threshold into the same bin. This yields 13, 36, 331 classes
for ETH-UCY, nuScenes bird’s eye view and nuScenes ego-
centric view, respectively. For all baselines (including our
method), we use the same joint training scheme where two
heads (classification and regression) are trained on top of
the feature embedding. For the LDAM baseline [1], we ex-
periment with different scaling factors and use the best set-
ting s = 1. Following BAGS [4], we split the classes into
4 homogeneous groups to ensure that all classes from the
same group have roughly the same number of items and use
a sampling ration of 8 to ensure that all groups contribute to
the mini-batch during training.
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Figure 1. Average vs. Top 1% error comparison on the ETH-UCY dataset (left) and the nuScenes bird’s eye view (right). Our base
method of integrating EWTA with the backbone of Trajectron++ (cyan) outperforms the previous state-of-the-art (magenta). Joint learning
with the contrastive loss (blue) yields large improvements on the challenging scenarios while not reducing the overall average accuracy.
The improvements are indicated by dashed arrows. While the resampling/reweighting baselines also improve on the hard cases, they
increase the average error a lot (overfitting). The model-based baselines for long-tailed (LDAM and BAGS) yield only small improvements
on ETH-UCY or worse performance on nuScenes bird’s eye view.
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Figure 2. Average vs. Top 1% error comparison on the nuScenes egocentric view dataset (left) and the Waymo open dataset (right). Our
approach utilizing the contrastive loss (blue) yields a significant improvement on the challenging scenarios while not reducing the overall
average accuracy. The improvements are indicated by dashed arrows. While the resampling/reweighting baselines also improve on the
hard cases, they increase the average error a lot (overfitting). The model-based baselines for long-tailed (LDAM and BAGS) yield smaller
improvements than our method.
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Figure 3. Plot of the feature space using tSNE [7] on three different datasets (a and b are different scenes from the ETH-UCY dataset).
Top. Training only with the supervised regression loss. Bottom. The resulting feature space when trained jointly with the contrastive loss.
Large brighte circles indicate the top 1% challenging scenarios. The darker the color of the sample, the easier it is.
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Figure 4. More results from our approach on the ETH-UCY dataset. For all these challenging scenarios, our approach reasons successfully
about the social relations to other pedestrians and yields better prediction than the baseline.
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Figure 5. More results from our approach on the nuScenes dataset (bird’s-eye view). For all these challenging scenarios, our approach
reasons successfully about the semantic cues and predicts the correct trajectory.
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(a) A running pedestrian and challenging egomotion (b) A vehicle turning left and the ego-car is slowing down

(c) A walking pedestrian and challenging egomotion (d) A vehicle turning right to pass-by the ego-car
Figure 6. More results from our approach on both egocentric view datasets: nuScenes (a-b) and Waymo (c-d). For each example, we show
both the last observed image (top) and the future image (bottom) along with the predictions (FLN-RPN [5] and Ours) and the ground truth.
We visualize the best hypothesis for each method. The future egomotion is also shown as arrow indicating the motion of the ego-car.

ETH-UCY nuScenes-Bird’s Eye View nuScenes Egocentric View Waymo Open Dataset
All Top 3% Top 2% Top 1% All Top 3% Top 2% Top 1% All Top 3% Top 2% Top 1% All Top 3% Top 2% Top 1%

Baseline 0.16/0.32 0.47/1.07 0.51/1.13 0.42/0.87 0.19/0.32 0.48/0.88 0.50/0.88 0.59/1.02 7.10 29.98 31.13 36.16 6.39 24.87 25.49 27.32
+ resample [6] 0.25/0.53 0.56/1.16 0.61/1.24 0.61/1.22 0.21/0.37 0.55/0.98 0.61/1.07 0.78/1.33 10.20 18.90 19.37 21.62 10.48 19.46 18.91 19.69
+ reweight [3] 0.28/0.56 0.41/0.78 0.44/0.81 0.43/0.76 0.33/0.58 0.74/1.28 0.80/1.38 0.99/1.67 14.47 15.33 15.42 16.20 14.00 17.01 16.80 16.44
+ reweight [2] 0.28/0.56 0.43/0.83 0.45/0.86 0.44/0.78 0.34/0.60 0.75/1.33 0.80/1.42 0.99/1.71 16.54 15.29 15.34 15.46 17.43 20.34 19.40 18.79
+ contrastive 0.16/0.32 0.46/1.03 0.48/1.03 0.38/0.71 0.18/0.30 0.44/0.73 0.46/0.72 0.54/0.85 7.04 25.05 25.26 27.49 6.49 22.36 22.72 24.09

Table 2. Comparison to the common resampling/reweighting techniques on the four datasets. For each method, we show the min-FDE/min-
ADE over all samples and over top 1-3% challenging samples. Our method yields large improvements on the challenging ones while
maintaining the average. This is in contrast to the reweighting/resampling baselines, which lead to much worse performance on average
(see the error increase on the ’All’ columns). Baseline indicates Traj++ EWTA for bird’s eye view and FLN-RPN [5] for egocentric view.


