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In this supplementary material, we provide a detailed in-
formation on GAN architectures utilized in our work, eval-
uation protocols, and more results. We initially describe
the architectural construction of our proposed framework.
Then, we describe the evaluation protocols, followed by ad-
ditional results on images of different datasets.

1. Networks Architectures

Identity Encoder (Table 1) The identity encoder starts
with a 3 x 3 convolutional layer that transforms the in-
put image to the feature domain. These features are then
further masked out to separate the face region from the
background. To obtain the mask of the input image, we
use DeepLabV3 [3] pre-trained on CelebAMask-HQ [11]
as done in [14]. The masking operation is followed by
four downsampling blocks and two intermediate blocks, all
of which in the form of residual units [5], to extract iden-
tity features f;4. We use instance normalization [7, 8] and
Leaky-ReLU activation within these blocks. Downsam-
pling is achieved by applying the average pooling operation.

Age Modulator (Table 2) This network adapts identity
features f;4 to the target age 7’; thereby producing age-
aware features (f,,). To this end, we replace the batch
normalization layers in the residual blocks with conditional
batch normalization (CBN) layers [13, 12, 18]. Given that
the target age is presented as an integer label ¢y € [0,n],
where n indicates the upper age-bound, we use the embed-
ding layers to obtain its scaling and shifting parameters. To
adapt age, applying affine transformations after normalizing
each identity feature is sufficient. At the last layer, we use a
4 x 4 convolutional layer that generates the final age-aware
features; we also found that applying a 1 x 1 convolutional
layer followed by adaptive average pooling also applicable
to use.

Decoder (Table 3) The decoder contains two intermedi-
ate and four upsampling blocks. Similarly, all inherit pre-
activation residual units [5]. We upsample the intermedi-
ate features by applying nearest-neighbor interpolation. We
apply adaptive instance normalization (AdalN) to all the

blocks. Through this normalization technique, we inject
age-aware features f,,, in order to self-guide the decoder.
Similar to existing work [4], we do not set a hyperbolic tan-
gent at the last activation layer. Instead, we force the model
to learn the color-range of image by itself. Thus, the last
layer is a 1 x 1 convolutional layer that maps the final fea-
tures to the image (RGB) domain. Prior to this mapping, we
use background features separated in the encoder and add it
to the final features to maintain the background information
and achieve better visual perception.

Discriminator (Table 4) We use discriminator [4] archi-
tecture with multiple linear output branches. At first, a 3 x 3
convolutional layer is applied to generate a feature represen-
tation of the input. Then, six pre-activation residual blocks
with Leaky-ReLU activation downsample the feature maps.
At the last layer, D fully connected layers are used to pre-
dict the validity (i.e., real or fake) of each age-domain. We
do not use any normalization in the discriminator.

2. Evaluation Protocol

Identity Preservation As discussed in the paper, we use
two metrics, namely, Frechét inception distance (FID) [6]
and Kernel inception distance (KID) [1], for estimating the
capability of the model on identity preservation. Both met-
rics are used to measure the discrepancy between two image
distributions (i.e. real pr and generated ps). Note that, in
our experiments, we evaluate the model in each age-group

Layer Resample Norm Output Shape
Image = - - 256 x 256 x 3
Conv 3 x 3 - - 256 x 256 x 64
Res. Block AvgPool IN 128 x 128 x 128
Res. Block AvgPool IN 64 x 64 x 256
Res. Block  AvgPool IN 32 x 32 x 512
Res. Block AvgPool IN 16 x 16 x 512
Res. Block - IN 16 x 16 x 512
Res. Block - IN 16 x 16 x 512

Table 1. Identity encoder architecture



Layer Resample Norm  Output Shape
Identity fiq - - 16 x 16 x 512
Target age 7/’ - - y' €[0,n]
Res. Block AvgPool  CBN 8 X 8 x 512
Res. Block AvgPool  CBN 4 x4 x512
Conv 4 x 4 - - 1x1x512
Table 2. Age modulator
Layer Resample = Norm Output Shape
Identity fiq - - 16 x 16 x 512
Age-aware fou - - 1x1x512
Res. Block - AdaIN 16 x 16 x 512
Res. Block - AdaIN 16 x 16 x 512
Res. Block Upsample  AdaIN 32 x 32 x 512
Res. Block Upsample  AdaIN 64 x 64 x 256
Res. Block Upsample AdaIN 128 x 128 x 128
Res. Block Upsample AdaIN 256 x 256 x 64
Conv 1 x 1 - - 256 x 256 x 3
Table 3. Decoder architecture
Layer Resample Norm Output size
Image x - - 256 x 256 x 3
Conv 3 x 3 - - 256 x 256 x 64
Res. Block  AvgPool 128 x 128 x 128
Res. Block AvgPool - 64 x 64 x 256
Res. Block AvgPool - 32 X 32 x 512
Res. Block  AvgPool - 16 x 16 x 512
Res. Block AvgPool - 8 x 8 x 512
Res. Block AvgPool - 4 x4 x512
LReLU - - 4 x4 x512
Conv 4 x 4 - - 1x1x512
LReLU - - 1x1x512
Reshape - - 512
LinearxD - - 1xD

Table 4. Discriminator architecture

separately which is similar to calculating intra-FID scores.

FID [6] relies on a pretrained Inception-V3 [17] model
that transforms each image of given distributions to the
vector space. Afterward, FID measures similarities be-
tween two vector space by FID(pr, pa) = |lur — pells +
Tr (ER +Ya—2 (ERZG)%) where 1 and X are the em-
pirical mean and covariance, respectively.

Similar to the FID, KID [1] is also operated on the
feature-space of pr and pg extracted using the Inception
model. However, KID computes squared maximum mean
discrepancy (MMD) between features by means of polyno-
mial kernel function k(z,y) = (éxTy + 1)3, where d is
feature dimension. It has been argued [1] that KID is an
unbiased metric than FID. Nevertheless, as FID became a

FFHQ

- Original:
https://github.com/NVlabs/ffhg-dataset

- Labeled:

https://github.com/royorel /FFHQ-Aging-Dataset

CelebA-HQ

- From [8]:
https://github.com/tkarras/progressive_growing_of_gans
- with Mask:
https://github.com/switchablenorms/CelebAMask-HQ

StyleGANv2 [10]

- Official model:

https://github.com/NVlabs/stylegan2

- Simple model:
https://github.com/lucidrains/stylegan2-pytorch
- Ready to use images:
https://thispersondoesnotexist.com/

CACD
http://bcsiriuschen.github.io/CARC/

Table 5. Links to the datasets.

LATS [14]
-https://github.com/royorel/Lifespan_Age_Transformation_Synthesis
HRFAE [20]

-https://github.com/InterDigitalInc/HRFAE

IPCGAN [19]

-https://github.com/dawei6875 //Face—-Aging-s -

Identity-Preserved-Conditiona nerative-A arial-Networks

Table 6. Links to the implementations.

standard metric on GANs, we report scores for both metrics
in our paper.

Age recognition We use age recognition accuracy (%) to
quantitatively measure the correctness of age transforma-
tion. We consider test images of age-group 20-29 to be the
source images for transforming their ages into 0-2, 3-6, 7-9,
10-14, 30-39, 40-49, and 50+ groups. We chose this partic-
ular age-group as an anchor to assess the age transformation
in aging and rejuvenating tasks. Similar to FID calculation,
we perform recognition for each age-group separately. We
use VGG16 [16] trained on age dataset [15] to predict the
age of generated images. We report the accuracy based on
the ratio of the number of samples recognized correctly to
the total number of samples.

3. Datasets and Implementations

In our experiment, we use images of FFHQ [9], CelebA-
HQ [8], CACD [2] datasets, as well as synthesized images
by StyleGANv2 [10]. In Table 5, we provide links to these
image sets.

In our performance comparisons, we mainly consider
two recent works: LATS [14] and HRFAE [20]. In addi-
tion, we compare our results against [IPCGAN [19]. Table 6
provides links to the implementations of these methods.

4. Additional Results

While performing an experiment on CelebA-HQ dataset,
we found that the dataset contains old-looking images.
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Figure 1. Performance of our model on old-looking images of
CelebA-HQ. Left and right are young and old-aged versions of
the input at the middle, respectively. Note that images are com-
pressed.

Hence, we additionally demonstrate the performance of our
model on such images in Figure 1 with a few exemplar
age transformations. As shown, the generated images have
a few color differences between the input (e.g., eyes and
chicks). We consider such occurrence as the effect of model
generalization on unseen data where model is attempting to
introduce new information according to the given age. Nev-
ertheless, the overall results exhibit the generalizability of
our model on old-looking images.

We also provide additional age transformation results on
FFHQ [9] and CelebA-HQ [8] datasets, as well as on syn-
thesized images by StyleGANv2 [10]. Figures 2, 3 and 4
demonstrate the performance of our method in aging and
rejuvenating tasks, thereby exhibiting continuous age trans-
formation. Note that the results for the images of CelebA-
HQ and StyleGANV?2 are generated by our model trained on
the FFHQ dataset.



35 y.o. 45 y.o. 50+ y.o.

Figure 2. Performance of our model on the FFHQ dataset. The first column is the input, whereas the others are our results (y.o. denotes
years old). The input images are from the test set, and the model has never seen them. Note that images are compressed.



15 y.o. 25 y.o. 35 y.o. 45 y.o. 50+ y.o.

v@@@@%’%’%

Figure 3. Generalization capability of our model on the CelebA-HQ dataset. The first column is the input, whereas the others are our results
(y.o. denotes years old). Note that images are compressed.



Figure 4. Generalization capability of our model on synthesized images of StyleGANv2. The ﬁrst column is the input, whereas the others
are our results (y.o. denotes years old). Note that images are compressed.
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