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Figure 1: Definition of additional angles.

1. Details of Our Model
1.1. Pose Prior

Our pose prior aims to model the distribution of valid
human poses. As the validity of a pose mostly depends on
the kinematics of its joint angles, instead of modeling the
distribution of 3D joint coordinates, which couple the limb
directions with their lengths, we propose to learn the distri-
bution of limb directions only. In particular, given the i-th
joint coordinate J; € R3 and the coordinates of its parent
joint J,,,, the limb direction can then be computed as
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We then represent a human pose as the directions of all
limbsd = [dT,d7,--- ,d%]T € R3/, where J is the num-
ber of limbs, which, in our case, is equal to the number of
joints.

As mentioned in the main paper, we choose a simple net-
work with 3 fully-connected layers to model our pose prior.
To ensure the invertiblity of the network, we formulate each
fully-connected layer as

f =(fQR +b) , )
where f € R37 and f € R37 are the feature vectors of the

output and input, respectively; Q € R37/*37 is an orthogo-
nal matrix; R € R37%37 is an upper triangular matrix with
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Figure 2: Overview of our generator. Note that, here, we show a generator that predicts the whole body motion (N = 1).
In our experiments, however, we use the same architecture to predict the motion of human body parts.

positive diagonal elements; b € R3” is the bias; o(-) is the
PReLU function.

1.2. Angle Loss

In Fig. 1, we visualise additional angles used to defined
our kinematics constraints. In Table 1, we provide the valid
motion range for most angles used.

Human3.6M [1]
LowerBound  UpperBound

HumanEva-I [4]
LowerBound  UpperBound

Angles (in Degree)

Neck2Spine 0 124 0 50
HeadPlane2TorsoPlane 0 120 - -
Leg2ThighPlane 80 180 72 166
Thigh2TorsoPlane 0 140 0 58
UpperSpine2LowerSpine 110 180 - -
Shoulder2Hip 0 84
Shoulder2Neck 32 134 - -
Shoulder2Shoulder 83 180 128 180

Spine2Hip 60 120

Arm2ShoulderPlane 0 91

Table 1: Ranges of different angles. Depending on the
skeleton model, some angles are undefined in some dataset.

Figure 3: Body parts. We divide a pose into 5 parts: 1.
torso, 2. right leg, 3. left leg, 4. right arm and 5. left arm.

1.3. Generator

Recall that the input to the generator is X =
[x1,X2,  * ,XH, X, ,Xpy]of length H+T'. The first H
frames are the motion history, and the remaining 7" frames
are replications of last observed frame xz. The goal of the
generator is to predict the DCT coefficients of the future

motion Y € RP*(H+T) given those of the replicated mo-
tion sequence, which we translate to learning motion resid-
uals. Note that, to encourage a smooth transition between
past poses and future ones, our generator not only predicts
the future motion (corresponding to the last T frames of Y),
but also recovers the past motion (corresponding to the first
H frames of Y). Therefore, we define a reconstruction loss
on the past motion as

Lpast = [Y[1: H] — X[1: H]|I3, 3)

where Y[1 : H] and X[1 : H] are the first H frames of
Y and X, respectively. Furthermore, to enforce the limb
length of the past poses to be the same as those of the future
poses, we include the limb length loss
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where lAt’i is the ¢-th limb length of ¢-th future pose, /; is the
ground truth of ¢-th limb length obtained from the history
poses and J is the number of limbs. The loss weights of
(Lpasts Liimp) for Human3.6M and HumanEva-I are both
(100, 500).

The detailed architecture of our generator is shown in
Fig. 2. It consists of 4 residual blocks. Each block com-
prises 2 graph convolutional layers. It also contains two
additional layers, one at the beginning, to bring the input to
feature space, and the other at the end, to decode the feature
to the residuals of the DCT coefficients.

2. Implementation Details

We implemented our network using Pytorch [3] and used
ADAM [?] to train it. The learning rate was set to 0.001
with a decay rate defined by the function

max(0, e — 100)
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lr_decay = 1.0 —

where e is the current epoch.
For Human3.6M, our model observes the past 25 frames

to predict the future 100 frames, and we use the first 20
DCT coefficients. For HumanEva-I, our model predicts the
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Figure 4: Results of controllable motion prediction with N = 5. In each row, we show the end poses of 10 samples
predicted with the same motion for certain body parts. The controlled body parts are shown in gray.

future 60 frames given the past 15 frames, and we use the
first 8 DCT coefficients.

To generate the pseudo ground truth for the multi-
modal reconstruction error (L,,,,), we follow the official
DLow [5] implementation of the multi-modal version of
FDE (MMFDE) and use the distance between the last pose
of the history to choose the pseudo ground truth. That is,
for a training sample, any other training sequence with sim-
ilar last pose in terms of Euclidean distance is chosen to be
a possible future. We set the distance threshold to 0.05 for
both Human3.6M and HumanEva-1.

3. Additional Qualitative Results
3.1. Controllable Motion Prediction with N > 2

In the main paper, we divided a human pose into 2 parts
(N = 2): lower body and upper body, and show the re-
sults of predicting motions with same lower body motion
but diverse upper body motions. Here, we provide qualita-
tive results with N = 5. In particular, as shown in Fig. 3,
we split a pose into: 1. torso, 2. right leg, 3. left leg,
4. right arm and 5. left arm, following this order for pre-
diction. As shown in Fig. 4, our model is able to perform
different levels of controllable motion prediction given the
detailed body parts segmentation.

3.2. Ablation Study

We show a qualitative comparison on the results of our
model without either the pose prior loss L, or the angle
loss L4ng in Fig. 5. This clearly demonstrates the dramatic
decrease in pose quality in both cases.
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Figure 5: Qualitative results of ablation study. From top to bottom, we show the end pose of 10 samples of our model
with all proposed losses, without the pose prior loss £,y and without the angle loss £,,,4. Without the pose prior, the model
predicts unlikely poses, as highlighted by the magenta boxes. When our model is trained without the angle loss, it produces
invalid poses, highlighted by blue boxes.



