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1. Label Encoder Structure
In Figure 1, we show the detailed architecture of our pro-

posed two-head label encoder, which is a modified version
of the label encoder proposed in LWL [1]. Note that the
generated mask encodings are further forced to be disentan-
gled by the cosine similarity loss.
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Figure 1. Detailed architecture of our two-head label encoder. For
brevity, we omit the weight predictor for the induction branch.

2. Ablation Study
2.1. Hyper-parameters

In this section, we investigate the impact of some hyper-
parameters like the template sampling interval T and mem-
ory size Nmax. Figure 2 shows the overall score for different
sampling interval T . We can find that a sampling interval of
5 provides the best result with an overall score of 83.1% on
YouTube-VOS 2018 [4] validation set.

Similarly, Figure 3 shows the overall score for differ-
ent memory size Nmax. In these experiments, we fix the
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Figure 2. Impact of the template sampling interval. The perfor-
mance is evaluated on the YouTube-VOS 2018 [4] validation set
in terms of the overall score.

Figure 3. Impact of the memory size. The performance is evalu-
ated on the YouTube-VOS 2018 [4] validation set in terms of the
overall score.

sampling interval T to 5. As we can see, larger memory
sizes lead to higher overall scores until a memory size of
20. For memory sizes larger than 40, the performance does



not change, since the length of videos in the YouTube-VOS
2018 [4] validation set rarely exceeds 200.

2.2. Merging Strategy

We analyze different ways of merging the mask encod-
ings provided by the two complementary branches. In
our approach, the two mask encodings are element-wisely
added and are forced to be decoupled during offline train-
ing. An alternative way to prevent the mask encodings
from being coupled together is to directly concatenate them
along the channel dimension. In Table 1, we report the per-
formance of the aforementioned two strategies. Naively
concatenating the encodings achieves an overall score of
81.7%, which is 1.4% lower than ours (83.1%). Note that
for fair comparison, we modify the last layer of the label
encoder to make sure that the outputs of the two merging
strategies have the same channel dimension.

Table 1. Ablation study for merging strategy. The performance is
evaluated on the YouTube-VOS 2018 [4] validation set in terms
of mean Jaccard (J ) and boundary (F) scores on both seen and
unseen categories.

Jseen Fseen Junseen Funseen Overall

Concatenated 80.9 85.4 76.3 84.1 81.7
Added 81.1 85.6 77.6 85.3 82.4

Added & decoupled 81.5 85.9 78.7 86.5 83.1

2.3. Self Attention

We also analyze the impact of the self-attention mod-
ule adopted in the proposed transformer architecture. If
we remove all the self-attention layers in the transformer,
the transduction branch will be reduced into a non-local
attention module. As we can see in Table 2, without the
self-attention layers, the overall score drops from 83.1% to
81.7%. This verify the effectiveness of the self-attention
layer for allowing template features to mutually reinforce
to be more compact and representative.

Table 2. Ablation study for the self-attention module in our
lightweight transformer. The performance is evaluated on the
YouTube-VOS 2018 [4] validation set in terms of mean Jaccard
(J ) and boundary (F) scores on both seen and unseen categories.

Jseen Fseen Junseen Funseen Overall

w/o self-attention 81.0 85.3 76.5 84.1 81.7
w/ self-attention 81.5 85.9 78.7 86.5 83.1

2.4. Induction branch v.s. Transductive branch

For the inductive branch, the online optimized model
shows greater discrimination capability than the transduc-
tive branch when encountering similar instances (e.g. Fig.

6 in the paper). However, it struggles to explore the underly-
ing context to produce temporal consistent results when the
target undergoes dramatic appearance changes (e.g. Fig. 4
and Fig. 6 in the paper), as this model processes each frame
and each local region inside a frame independently.

For the transductive branch, the non-local attention
mechanism is naturally suitable for the spatio-temporal de-
pendency modeling, thus shows better temporal coherence
(Fig. 4). Whereas, it is less discriminative due to the fixed
embedding for feature matching.
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Figure 4. Per-frame IoU over time (left) and key frames with fail-
ures marked in yellow boxes (right). The transductive branch
shows better spatio-temporal coherence. Please zoom in to view.

3. Qualitative Results
In Figure 5, we show some qualitative comparisons be-

tween our approach and recently proposed methods like
EGMN [2], CFBI [5], STM [3], and LWL [1]. We se-
lect six representative video sequences from DAVIS 2017
validation set, including breakdance, dance-twirl, india,
pigs, soapbox, and bike-packing. These sequences con-
tain many challenging scenarios like similar distractors, oc-
clusions, and appearance changes. In the breakdance se-
quence, EGMN [2] mistakenly regards the person squatting
behind as part of the target. CFBI [5], STM [3], and LWL
[1] fail to segment one of the legs. In the pigs sequence,
EGMN [2], CFBI [5], and LWL [1] fail to segment the
piglet in green after severe occlusion. In general, our ap-
proach performs well on the first five sequences compared
with other methods. In the bike-packing sequence, our ap-
proach fails to segment the legs of the person.
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Figure 5. Qualitative comparisons between our approach and recently proposed methods on the DAVIS 2017 validation set. The selected
frames experience similar distractors (1st), occlusions (3rd and 4th rows), or tremendous appearance changes (2nd and 5th rows). The last
row shows a failure case, the algorithm fails to segment the legs of the person.
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