
Appendix

Acknowledgements

This work was supported by JST CREST Grant Number
JPMJCR19A1, Japan, and JSPS KAKENHI Grant Number
JP21J13789, Japan. The experiments were partially con-
ducted on AI Bridging Cloud Infrastructure (ABCI) pro-
vided by National Institute of Advanced Industrial Science
and Technology (AIST). The training progress was tracked
and the reports were created with Weight & Biases. Finally,
we thank David Felices for helpful comments and discus-
sion.

A. UniQer Model Details

Object Targeting Module (§4.3). We show an overview
of the Object Targeting Module (OTM) with an example
when k = 3 in Fig. 4. The OTM groups objects O into
three groups: the target object group Ot, the distracter ob-
ject group Od, and the masked object group Om. Examples
of the object groups and the corresponding questions are
shown in Fig. 5.

B. Evaluation Metrics

Perfect Address and Correct Address (§6.1). Given a
question q and an answer a from the Oracle, O will be di-
vided into two object groups in mutually exclusive and col-
lectively exhaustive manner: a matched group Oq for ob-
jects that matches (q, a) and an unmatched group Oq oth-
erwise. In order for a question to be perfect or correct, the
target objects Ot and the distracter objects Od must be sepa-
rately belongs to matched or unmatched group, i.e., it must
fulfill either Ot ∈ Oq ∧ Od ∈ Oq or Ot ∈ Oq ∧ Od ∈
Oq . What makes the difference between perfect and cor-
rect is whether the masked objects are mixed with the tar-
get objects. That is, when the target objects belong to the
matched group Ot ∈ Oq , the case Oq

⋂
Om = {ϕ} is

perfect and, otherwise, correct. Fig. 5 also gives exam-
ples of perfect questions (ex.1 and ex.4) and correct ques-
tions(ex.2 and ex.3). In ex.3, objects are grouped as Ot =
{green cylinder}, Od = {green sphere}, and Om =
{red cylinder}. The question in ex.3 is correct, since it will
divide the objects as Oq = {green cylinder, red cylinder}
and Oq = {green sphere}, while in ex.4 is perfect, since
the question addresses to the target objects without includ-
ing the masked object as Oq = {green cylinder} and
Oq = {green sphere, red cylinder}.

C. Learning Details

Policy Gradient Optimization (§5.2). In accordance with
the existing studies, we adopt the policy gradient method [8]

��
��
��
�

��
��
��

��
���
��
��
��

��
��

�

��
��

	
���
��

��
��
��
�

�������

��
��
���
��
��

��
��
���
���

�

��������������������������
���������
������
�������

���������
�������������������������������

��
���	��� ����
���	��
����������	���������

� � � �

� �

Figure 4: Overview of the Object Targeting Module (OTM).
In this figure, an example process of when k = 3 and N = 6
is demonstrated. The input of the bidirectional GRU is the
object features in order of decreasing confidence.

������

����

����

����

���������� ������

�����������������������

������������

������������������

���� �����������������������

��������������� ���������������
�

Figure 5: Example of possible questions given objects with
three property groups; the target object group Ot, the dis-
tracter object group Od, and the masked object group Om.
Given such object groups from the OTM, the QDT is re-
quired to generate questions that discriminate target objects
from distracter objects. Groups with solid line represent
matched objects if an answer to a question is yes and groups
with dotted lines represent unmatched objects. Here, ex.1
and ex.4 are the perfect questions, and ex.2 and ex.3 are the
correct questions.

for optimizing the OTM. The objective function will be

J(θ) = Eπθ

[
T∑

t=1

r(St, At)

]
, (10)

where πθ represents the policy function parameterized with
θ.

Since policy gradient approach has a good convergence
on high-dimensional action space, it is suitable for our pur-
poses. The goal of policy gradient is to find the policy
parameter θ that gives better expected rewards via gra-
dient ascent. With the episodic settings, the Questioner
engages in multiple trajectories with length T defined as
τ = (S0, A0, R0, . . . , ST−1, AT−1, RT−1, RT). Given the

Algorithm 1: UniQer RL flow for a scene
Data: O

1 The Oracle picks an goal object o∗ ∈ O
2 q = [], a = [] ▷ questions & answers
3 for t = 1 to T do ▷ dialogue loop
4 ▷ Prepare embeddings ▷ see §4.1
5 xv ← Fv([ov(i),oN

g (i)]i∈N)

6 xt
l ← [[CLS], w1

1 , w
1
2 , ..., w

1
W1

, a1, w2
1 , ..., a

t−1]

7 xh ← [xv ,xt
l]

8 xe ← xh + xseg + xpos

9 ▷ OET ▷ see §4.2
10 {X̃o, X̃[CLS], X̃l} ← OET(xe)

11 σo ← [sigmoid(Fo(X̃i
o) · Fc(X̃[CLS]))]i∈N

12 Pô ← softmax(σo)
13 ▷ OTM ▷ see §4.3
14 Get top-k object ids: K ← argtopk(Pô)

15 xk ← [FA(ov(i)),FB(oK
g (i)),FC(Pô(i))]i∈K)

16 At ← sampling(FRL(xk))

17 gk ← ternary(At) ▷ gk ∈ R3×k

18 g ← padding(gk) ▷ g ∈ R3×N

19 if At ∈ {0, 3k − 1} : ▷ end of dialogue (EOD)

20 r(St, At)←
{
1− rd(t) if argmax(Pô) = o∗id
0 otherwise

21 break
22 elif t == T : ▷ EOD should have been generated
23 r(St, At)← 0
24 else:
25 ▷ QDT ▷ see §4.4
26 M← X̃o + Fs(g)
27 [wt

1, w
t
2, ..., w

t
Wt

]← QDT([BOS],M)

28 append [wt
1, w

t
2, ..., w

t
Wt

] to q, at to a
29 end
30 end

trajectories, the gradients of the objective function will be
approximated by introducing REINFORCE algorithm [9]
as follows

∇θJ(θ) ≈ Eπθ

[
T−1∑
t=0

∇θ lnπθ(At|St)(G(t)− b(St))

]
(11)

where G(t) =
∑T−1

t′=t γ
T−(t′+1)Rt′+1 is the return function

with discount factor γ applied.
Implementation Details (§6, §7). UniQer was im-
plemented in PyTorch and the Oracle was implemented
using the engine proposed by [5]. All experiments
were conducted using six Quadro RTX 8000 GPUs.
The parameter setting for the encoder and the decoder
was: d model=512, n head=8, dim feedforward=512,
n layers=3, and dropout=0.1. As an image feature extrac-
tor, we used Imagenet pre-trained ResNet34 [4]. It took
approximately two days for UniQer to train from scratch on
a single GPU.
Turn Discount Factor rd (§7.1). The turn discount fac-
tor rd, which reduces the reward based on the number of
questions, is introduced to promote a more efficient ques-

tioning strategy by trying to minimize the number of ques-
tions. Without this discount factor, the agent tends to repeat
the same question it already asked during the dialogue even
after it finds the correct goal object. We define the turn dis-
count factor rd as:

rd(t) = β ∗
t

T
, (12)

where β is a coefficient that determines the scale of the
penalty, t is the number of generated questions, and T is the
maximum number of questions allowed for the agent. Our
experiments were conducted with β = 0.2 and T = 5. Just
to be sure, the agent should generate a special token, end of
dialogue (EOD), to receive a reward before the number of
questions reaches T . Therefore, our final reward function is
described as:

r(St, At) =

{
1− rd(t) if argmax(Pô) = o∗id
0 otherwise

. (13)

RL algorithm (§5.2). The overall procedure of reinforce-
ment learning is shown in Algorithm 1. The detailed ex-
planation of each equation is denoted in the corresponding
section.

D. Baseline Model Details (§7.1)

In a manner similar to that of the previous studies [3, 7],
we divide the role of the questioner into the following four
components:

• Question and Answer Encoder (QAE): An LSTM
module encoding the current quesion and the answer
given by the Oracle.

• Dialogue State Encoder (DSE): An LSTM module
encoding past dialogues.

• Question Generator (QGen): An LSTM module gen-
erating a question based on the DSE’s output and the
top-k object features with high Pô.

• Guesser: An MLP module for outputting candidate
probabilities Pô using the features of an object as the
input.

The Guesser, accompanied by the QAE and the DSE, and
the QGen are trained separately in the upstream tasks in
a supervised manner, and then merged into a single agent
model to conduct reinforcement learning.
Question and Answer Encoder (QAE) The QAE encodes
the question tokens generated by the QGen and the corre-
sponding answer provided by the Guesser. The encoded
features will be passed to the DSE. This function is imple-
mented by a standard LSTM.

Dialogue State Encoder (DSE) The DSE generates a di-
alogue state vector X̃D that holds the history of questions
and answers. X̃D is used to both generate the next question
token in the QGen and compute the goal object probabili-
ties P ô in the Guesser. This function is implemented by a
standard LSTM.
Question Generator (QGen) Formally, the QGen can be
thought of as the probabilistic language model, which se-
quentially generates a word wt

l to compose a question qt,
given the previous word token wt

l−1, the dialogue history
vector X̃D, the context image feature x′

v extracted by the
image feature extractor and tok-k object feature embedding
xk. This can be formalized as follows:

P (wt
l+1|wt

l , X̃D,x
′
v,xk). (14)

We employed the LSTM to implement such functions.
Guesser The Guesser guesses the goal object o∗ based on
the current scene and the question answer history as:

P (ô∗|xv, X̃D). (15)

We implement this function as:

Pô = softmax([sigmoid(F1(x
i
v) · F2(X̃D))]i∈N), (16)

where F1 and F2 are the linear transformation functions.
While this operation is similar to Eqs. (3, 4), the other object
features are not compared when computing a probability for
an object.
Supervised Learning The loss function of the Guesser
is as same as the object prediction loss defined in Eq. (8),
where the QAE and the DSE will be jointly trained.

The loss function of the QGen is described as:

Lgen = −
T∑

t=1

Wt∑
l=1

log p(wt
l+1|wt

l ,h), (17)

where h is the hidden vector of the model, T is the maxi-
mum number of questions in a dialogue, and Wt is the num-
ber of tokens included in the t-th question.
Reinforcement Learning Since the baseline model pro-
duces a word token on each iterative step, the global
timestep for the baseline model t′ is defined as t′ =∑t−1

τ=1 |Dτ |+ l, where |Dτ | is the length of a past dialogue
and l is the step in the current dialogue. The set of actions
At′ corresponds to the tokens in the vocabulary V . The state
is defined as follows:

St′ = (I, (qτ , aτ)1:t−1, (w
t
1, . . . , w

t
l)). (18)

The transition to the next state depends on the selected ac-
tion:

• If At′+1 = <EOD>, the dialogue terminates. Thus,
St′+1 becomes the last state.

• If At′+1 = <EOS>, the current question generation
terminates and the Questioner receives an answer at.
The next state will be St′+1 = (I, (qτ , aτ)1:t).

• Otherwise, if the generation of the question
continues, the next state will be St′+1 =
(I, (qτ , aτ)1:t−1, (w

t
1, . . . , w

t
l , w

t
l+1))

The model will be trained with policy gradient optimiza-
tion as introduced in Eq. (10).

E. Supplementary Results (§7)

Average Vocabulary of Questions (§7.2, §7.3). Since our
CLEVR Ask task comprises images that include multiple
identical objects, descriptive questions are a requirement
for task success by nature. Therefore, the descriptiveness
of the questions can be evaluated by how well the model
performed in such an environment (i.e. the task success ra-
tio).

The descriptiveness can be also measured as the num-
ber of a question’s unique attributes, such as colors, sizes,
and spatial relations. We therefore introduced two met-
rics: nvocab, which shows the average vocabulary size of
the questions, and nvocab, which shows the average vocab-
ulary size of the dialogues. They are defined as

nvocab =
1

Ndata

∑
D∈data

1

TD

TD∑
t=1

|{wt
ω}

Wt
ω=1|, (19)

nvocab =
1

Ndata

∑
D∈data

1

TD
|
TD⋂
t=1

{wt
ω}

Wt
ω=1|, (20)

where Ndata is a number of data samples and TD is a num-
ber of questions in a dialogue D.

Summarized results are shown in Tab. 4. The question
mean in Ask3 was 1.48 for Baseline and 3.32 for Ours (full),
while the dialogue mean was 3.15 for Baseline and 3.84 for
Ours (full). The results indicate that, when asking a ques-
tion, UniQer uses more than three attributes in its questions,
e.g. “Is it to the LEFT of a RED CUBE?”, while the base-
line asks trivial questions with a single attribute, e.g. “Is it
a SPHERE?” They also show that UniQer has the richest
vocabulary in a dialogue. The results in Ask4 are less sig-
nificant compared with Ask3, while UniQer still uses more
than one attributes in a question. The question mean and
the dialogue mean were highest with Ours (v) condition.
However, as shown by the task success ratio presented in
Tab. 2, the generated questions were not as effective as with
UniQer.
Force-Stop Conditions (§7.2, §7.3). Additional results on
the force-stop condition is presented in Tab. 5. The result
shows that our model outperformed in the force-stop con-
dition as well. Compared with the results obtained without
force-stop conditions, which were presented in Tab. 2, the

�������� �������������� ������

�����������������������

��������������������������
���������������

������
���������������������������

������������������������������
�
	
����
	�����

�

�

�

�

���������������������������

��������������������
���������������������

�������������	

����������

�������������������

�
	
����
	�����
	�����

�

�

�

�

���������������������
�����������

�
	
���� ����

�

�

�

������
����������������

������
������������������

�������������������������������

���������������

�����������������

�
	
����

�

�

� ������
������������������

���������������������
�����������
�����������������

�
	
����

�

�

�

�
	
����
	�����

	�����

������������

������
��������
�	���������	
��

������������������������
�	���������	
��

�����������������������
�	���������	
��

�
	
����

�

�

�

�

	�����

�������������������������������	
��

�����������������

��������
�	�����������������

�����������������������

�
	
����

�

�

�

�

�������������������	
��

�����������������������������������	
��

�������������������������������	
��

�������������������������������	
��

�
	
����

�

�

�

�������
�	��

��������������������
�	�����������������

��������
�	�����������������

���������������������
��
�	����������������� �

�

�

�

�
	
���� ����

������
���������	
���

�������������������������	
��

���������	
�� �

�

�

�
	
���� ����

������
������������������

���������������������
�����������

����������������� �

�

�

�
	
���� ����

��������

�

�������
������������������

�����������������

Figure 6: Additional qualitative samples from Baseline and UniQer.

Question Mean (nvocab) Dialogue Mean (nvocab)

Model New Img New Obj New Img New Obj

Ask3

Baseline 1.48±0.27 1.48±0.27 3.15±0.08 3.15±0.07

Ours(v) 2.62±0.04 2.58±0.08 3.54±0.13 3.54±0.16

Ours(num) 1.54±0.04 1.52±0.03 2.92±0.11 2.98±0.12

Ours(nu) 1.51±0.02 1.47±0.07 3.11±0.17 3.12±0.12

Ours(full) 3.32±0.16 3.35±0.08 3.82±0.12 3.84±0.20

Ask4

Baseline 1.00±0.00 1.00±0.00 3.03±0.06 3.05±0.03

Ours(v) 2.13±0.05 2.10±0.04 3.44±0.24 3.47±0.22

Ours(num) 1.56±0.03 1.60±0.08 3.12±0.09 3.09±0.05

Ours(nu) 1.56±0.04 1.59±0.05 3.19±0.08 3.13±0.06

Ours(full) 1.49±0.02 1.54±0.05 3.06±0.08 3.06±0.04

Table 4: Question vocabulary for comparative models pre-
sented in Tab. 2. Here, nvocab shows the average vocabulary
size of the questions, and nvocab, which shows the average
vocabulary size of the dialogues.

Ask3 Ask4

Model New Img↑ New Obj↑ New Img↑ New Obj↑

Baseline(fs) 59.78±5.75 60.37±5.71 64.76±1.26 65.02±1.22

Ours(full-fs) 85.06±1.55 85.17±1.47 83.08±0.69 83.70±0.88

Table 5: Comparative results on the task success ratio for
the baseline and UniQer in reinforcement learning on stop
condition. In stop condition, a submission action is not re-
quired and the goal object prediction is automatically sent
to the oracle at the end of the dialogue.

variance for UniQer decreased; however, there were no sig-
nificant differences.

Additional Qualitative Samples (§7.4). Extensive quali-
tative examples are presented in Fig. 6. From the samples,
we can see that UniQer made a full use of descriptive ques-
tion in all scenes, while Baseline ended up with generating
simple questions. We also find that the question strategy
of Baseline was nearly fixed; most of the time it was ask-
ing relative location question two times in the beginning
and simple material question at the end. The results also
reveal the UniQer’s limitation. It tend to ask extra ques-
tions to make its prediction perfect, while the goal object is
deemed to be found. This suggests some improvements on
answer submission are required in the future works. Addi-
tionally, UniQer fails when the goal object is surrounded by
too many identical objects. In our future work, more com-
plex referring expressions such as “Is it second to the left of
sth?” will be needed.

F. GuessWhat?! Results

The supplemental results for GuessWhat?! in Tab 6. Sur-
prisingly, UniQer achieved the on par results, even with the
trivial modifications from CLEVR Ask settings. This im-
plies that the model can robustly be applied to the variant
datasets. Moreover, the qualitative inspection revealed that
UniQer managed to generate descriptive questions which
were not shown in the previous models, for example, “Is it
the book that is closest to the left side of the picture?” and
“Is it the second one from the left?”. In the future study, we
are planning to report the improved results based on UniQer
architecture.

G. Dataset Details (§3)

Statistics. Both Ask3 and Ask4 datasets consist of 70K
training, 7.5K validation, and 7.5K test images, each of
which includes three to ten objects. The number of objects

Models Task Success Ratio (%)

Baseline (RL) 58.40
[10] [Zhang+ ECCV18] 60.80
[2] [Abbasnejad+ CVPR19] 60.60
[1] [Abbasnejad+ CVPR20] 62.10
[6] [Pang+ AAAI20] 64.44
Ours (UniQer) 62.17

Table 6: Results for GuessWhat?!. The task success ratio
for the new image condition.

in Ask3 dataset is 455,216, 48,673, and 48,447, for train-
ing, validation and test sets respectively, while for Ask4 is
454,038, 48,317, and 48,674. Ten questions per image are
generated yielding 700K, 75K, and 75K questions for train-
ing, validation, and test images, respectively. Questions are
generated by sampling the question templates given the im-
age scene graph. Each question is validated to ensure it is
related to the scene by checking whether it is asking about
something that exists in the scene. Note that these ques-
tions are only used in supervised learning. Additional statis-
tics for the datasets are available as follows: a distribution
of the number of objects Fig. 7, a distribution of the ob-
ject attributes Fig. 8, and a distribution of the question at-
tributes Fig. 9.
Scene Examples. Examples of scenes for both datasets are
presented in Fig. 10.

References
[1] E. Abbasnejad, I. Abbasnejad, Q. Wu, J. Shi, and A. v. d.

Hengel. Gold seeker: Information gain from policy distri-
butions for goal-oriented vision-and-langauge reasoning. In
CVPR, pages 13450–13459, 2020.

[2] E. Abbasnejad, Q. Wu, Q. Shi, and A. v. d. Hengel. What’s to
know? uncertainty as a guide to asking goal-oriented ques-
tions. In CVPR, pages 4155–4164, 2019.

[3] H. De Vries, F. Strub, S. Chandar, O. Pietquin, H. Larochelle,
and A. Courville. Guesswhat?! visual object discovery
through multi-modal dialogue. In CVPR, pages 5503–5512,
2017.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016.

[5] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei,
C. Lawrence Zitnick, and R. Girshick. Clevr: A diagnos-
tic dataset for compositional language and elementary visual
reasoning. In CVPR, pages 2901–2910, 2017.

[6] W. Pang and X. Wang. Visual dialogue state tracking for
question generation. In AAAI, pages 11831–11838, 2020.

[7] F. Strub, H. De Vries, J. Mary, B. Piot, A. Courvile, and
O. Pietquin. End-to-end optimization of goal-driven and vi-
sually grounded dialogue systems. In IJCAI, pages 2765–
2771, 2017.

[8] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Man-
sour. Policy gradient methods for reinforcement learning
with function approximation. In NIPS, pages 1057–1063,
2000.

[9] R. J. Williams. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

[10] J. Zhang, Q. Wu, C. Shen, J. Zhang, J. Lu, and A. Van
Den Hengel. Goal-oriented visual question generation via
intermediate rewards. In ECCV, pages 186–201, 2018.

3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

co
un

t

CLEVR_Ask3_train

3 4 5 6 7 8 9 10
0

200

400

600

800

1000

co
un

t

CLEVR_Ask3_val

3 4 5 6 7 8 9 10
0

200

400

600

800

1000

co
un

t

CLEVR_Ask3_test
Object Number Distribution

3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

co
un

t

CLEVR_Ask4_train

3 4 5 6 7 8 9 10
0

200

400

600

800

1000

co
un

t

CLEVR_Ask4_val

3 4 5 6 7 8 9 10
0

200

400

600

800

1000

co
un

t

CLEVR_Ask4_test
Object Number Distribution

Figure 7: Distribution of the number of objects in Ask3 and Ask4 dataset.

cube cylinder sphere
0

50000

100000

150000

co
un

t

Shape

rubber glass metal
0

50000

100000

150000

co
un

t

Material

blue red green
0

50000

100000

150000

co
un

t

Color

medium large small
0

50000

100000

150000

200000
co

un
t

Size

Attiribute Distribution of Ask3

cylinder cube cone sphere
0

25000

50000

75000

100000

125000

150000

co
un

t

Shape

glass rubber marble metal
0

25000

50000

75000

100000

125000

co
un

t

Material

green blue yellow red
0

25000

50000

75000

100000

125000

co
un

t

Color

large xsmall small medium
0

25000

50000

75000

100000

125000

150000

co
un

t

Size

Attiribute Distribution of Ask4

Figure 8: Distribution of the attributes of objects in Ask3 and Ask4 dataset.

relate non_relate

relate_color
12.52%

relate_shape12.54%

relate_size12.41%

relate_material
12.40%

color
12.60%

shape12.61%

size12.44%

material
12.48%

Distribution of question types of Ask3

relate non_relate

relate_color
12.55%

relate_shape12.50%

relate_size12.46%

relate_material
12.40%

color
12.60%

shape12.55%

size12.50%

material
12.43%

Distribution of question types of Ask4

Figure 9: Distribution of question attributes in Ask3 and Ask4 dataset.

Ask4

Ask3

Figure 10: Sample scenes in Ask3 and Ask4 dataset.

