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Appendices
In this supplementary material, we first provide details
about training in Sec. A and about inference in Sec. B. We
then report a more detailed analysis of out method in Sec. C
and provide more detailed results of the experiments shown
in the main paper in Sec. D.

Furthermore, we want to draw the attention of the reader
to the compiled video available on the project page at
https://github.com/visionml/pytracking.
The video provides more visual insights about our tracker
and compares visually with the baseline tracker Su-
perDiMP. It shows tracking of distractors and indicates the
same object ids in consecutive frames with agreeing color.

A. Training
First, we describe the training data generation and sam-

ple selection to train the network more effectively. Then, we
provide additional details about the training procedure such
as training in batches, augmentations and synthetic sample
generation. Finally, we briefly summarize the employed
network architecture.

A.1. Data-Mining

We use the LaSOT [15] training set to train our target
candidate association network. In particular, we split the
1120 training sequences randomly into a train-train (1000
sequences) and a train-val (120 sequences) set. We run the
base tracker on all sequences and store the target classifier

Is a candidate Does the candidate Does any
Number selected with max score candidate

of as target? correspond correspond to Num
Name candidates max(si) ≥ η to the target? the target? Frames Ratio

D 1 X X X 1.8M 67.9%
H > 1 X X X 498k 18.4%
G > 1 x X – 8k 0.3%
J > 1 X x x 76k 2.8%
K > 1 X x X 42k 1.5%

other – – – – 243k 9.1%

Table 1. Categories and specifications for each frame in the train-
ing dataset used for data-mining.

score map and the search area on disk for each frame. Dur-
ing training, we use the score map and the search area to
extract the target candidates and its features to provide the
data to train the target candidate association network.

We observed that many sequences or sub-sequences con-
tain mostly one target candidate with a high target classifier
score. Thus, in this cases target candidate association is triv-
ial and learning on these cases will be less effective. Con-
versely, tracking datasets contain sub-sequences that are
very challenging (large motion or appearance changes or
many distractors) such that trackers often fail. While these
sub-sequences lead to a more effective training they are rel-
atively rare such that we decide to actively search the train-
ing dataset.

First, we assign each frame to one of six different cate-
gories. We classify each frame based on four observations
about the number of candidates, their target classifier score,
if one of the target candidates is selected as target and if this
selection is correct, see Tab. 1. A candidate corresponds to
the annotated target object if the spatial distance between
the candidate location and center coordinate of the target
object is smaller than a threshold.

Assigning each frame to the proposed categories, we ob-
serve, that the dominant category is D (70%) that corre-
sponds to frames with a single target candidate matching the
annotated target object. However, we favour more challeng-
ing settings for training. In order to learn distractor associ-
ations using self supervision, we require frames with mul-
tiple detected target candidates. Category H (18.4%) corre-
sponds to such frames where in addition the candidate with
the highest target classifier score matches the annotated tar-
get object. Hence, the base tracker selects the correct can-
didate as target. Furthermore, category G corresponds to
frames where the base tracker was no longer able to track
the target because the target classifier score of the corre-
sponding candidate fell bellow a threshold. We favour these
frames during training in order to learn continue tracking
the target even if the score is low.

Both categories J and K correspond to tracking failures
of the base tracker. Whereas in K the correct target is de-
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tected but not selected, it is not detected in frames of cat-
egory J. Thus, we aim to learn from tracking failures in
order to train the target candidate association network such
that it learns to compensate for tracking failures of the base
tracker and corrects them. In particular, frames of category
K are important for training because the two candidates with
highest target classifier score no longer match such that the
network is forced to include other cues for matching. We
use frames of category J because frames where the object
is visible but not detected contain typically many distrac-
tors such that these frames are suitable to learn distractor
associations using self-supervised learning.

To summarize, we select only frames with category H, K,
J for self-supervised training and sample them with a ratio
of 2 : 1 : 1 instead of 10 : 2 : 1 (ratio in the dataset). We ig-
nore frames from category D during self-supervised training
because we require frames with multiple target candidates.
Furthermore, we select sub-sequences of two consecutive
frames for partially supervised training. We choose chal-
lenging sub-sequences that either contain many distractors
in each frame (HH, 350k) or sub-sequences where the base
tracker fails and switches to track a distractor (HK, 1001) or
where the base tracker is no longer able to identify the tar-
get with high confidence (HG, 1380). Again we change the
sampling ratio from approximately 350 : 1 : 1 to 10 : 1 : 1
during training. We change the sampling ration in order to
use failure cases more often during training than they occur
in the training set.

A.2. Training Data Preparation

During training we use two different levels of augmen-
tation. First, we augment all features of target candidate
to enable self-supervised training with automatically pro-
duced ground truth correspondences. In addition, we use
augmentation to improve generalization and overfitting of
the network.

When creating artificial features we randomly scale each
target classifier score, randomly jitter the candidate location
within the search area and apply common image transfor-
mations to the original image before extracting the appear-
ance based features for the artificial candidates. In partic-
ular, we randomly jitter the brightness, blur the image and
jitter the search area before cropping the image to the search
area.

To reduce overfitting and improve the generalization, we
randomly scale the target candidate scores for synthetic and
real sub-sequences. Furthermore, we remove candidates
from the sets V ′ and V randomly in order to simulate newly
appearing or disappearing objects. Furthermore, to enable
training in batches we require the same number of target
candidates in each frame. Thus, we keep the five candidates
with the highest target classifier score or add artificial peaks
at random locations with a small score such that five can-

didates per frame are present. When computing the losses,
we ignore these artificial candidates.

A.3. Architecture Details

We use the SuperDiMP tracker [8] as our base tracker.
SuperDiMP employs the DiMP [1] target classifier and the
probabilistic bounding-box regression of PrDiMP [12], to-
gether with improved training settings. It uses a ResNet-
50 [22] pretrained network as backbone feature extractor.
We freeze all parameters of SuperDiMP while training the
target candidate association network. To produce the visual
features for each target candidate, we use the third layer
ResNet-50 features. In particular, we obtain a 29×29×1024
feature map and feed it into a 2 × 2 convolutional layer
which produces the 30 × 30 × 256 feature map f . Note,
that the spatial resolution of the target classifier score and
feature map agree such that extracting the appearance based
features fi for each target candidate vi at location ci is sim-
plified.

Furthermore, we use a four layer Multi-Layer Perceptron
(MLP) to project the target classifier score and location for
each candidate in the same dimensional space as fi. We use
the following MLP structure: 3→ 32→ 64→ 128→ 256
with batch normalization. Before feeding the candidate lo-
cations into the MLP we normalize it according to the image
size.

We follow Sarlin et al. [34] when designing the candi-
date embedding network. In particular, we use self and
cross attention layers in an alternating fashion and employ
two layers of each type. In addition, we append a 1 × 1
convolutional layer to the last cross attention layer. Again,
we follow Sarlin et al. [34] for optimal matching and reuse
their implementation of the Sinkhorn algorithm and run it
for 10 iterations.

B. Inference

In this section we provide the detailed algorithm that de-
scribes the object association module (Sec. 3.7 in the paper).
Furthermore, we explain the idea of search area rescaling at
occlusion and how it is implemented. We conclude with
additional inference details.

B.1. Object Association Module

Here, we provide a detailed algorithm describing the ob-
ject association module presented in the main paper, see
Alg. 1. It contains target candidate to object association
and the redetection logic to retrieve the target object after it
was lost.

First, we will briefly explain the used notation. Each
object can be modeled similar to a class in programming.
Thus, each object o contains attributes that can be accesses
using the ”.” notation. In particular (oj).s returns the score
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Algorithm 1 Object Association Algorithm.
Require: Set of target candidates V
Require: Set of objects of previous frame O′

Require: Target object ô′

1: O = {}, N = |V|
2: for i = 1, . . . , N do
3: if matchOf(vi) 6= dustbin && p(vi) ≥ ω then
4: v′j ← matchOf(vi)
5: (o′j).s← concat((o′j).s, [si])
6: oi ← o′j
7: else
8: oi ← newObject(getNewId(), [si])

9: O ← O ∪ {oi}
10: if ô′ 6= none and ô′.id ∈ {o.id | o ∈ O} then
11: ô = getObjectById(O, ô′.id)
12: for i = 1, . . . , N do
13: if max(ô.s) < (oi).s[−1] then
14: ô = oi
15: else
16: i = argmaxi{(oi).s[−1]) | oi ∈ O}
17: if (oi).s[−1] ≥ η then
18: ô = oi
19: else
20: ô = none
21: return ô, O

attribute s of object oj . In total the object class contains
two attribute: the list of scores s and the object-id id. Both
setting and getting the attribute values is possible.

The algorithm requires the following inputs: the set of
target candidates V , the set of detected objects O′ and the
object selected as target ô in the previous frame. First, we
check if a target candidate matches with any previously de-
tected object and verify that the assignment probability is
higher than a threshold ω = 0.75. If such a match exists,
we associate the candidate to the object and append its tar-
get classifier score to the scores and add the object to the set
of currently visible object O. If a target candidate matches
none of the previously detected objects, we create a new
object and add it to O. Hence, previously detected objects
that miss a matching candidate are not included inO. Once,
all target candidates are associated to an already existing or
newly created object. We check if the object previously se-
lected as target is still visible in the current scene and forms
the new target ô. After the object was lost it is possible that
the object selected as target is in fact a distractor. Thus, we
select an other object as target if this other object achieves
a higher target classifier score in the current frame than any
score the currently selected object achieved in the past. Fur-
thermore, if the object previously selected as target object is
no longer visible, we try to redetect it by checking if the ob-

ject with highest target classifier score in the current frame
achieves a score higher than a threshold η = 0.25. If the
score is high enough, we select this object as the target.

B.2. Search Area Rescaling at Occlusion

The target object often gets occluded or moves out-of-
view in many tracking sequences. Shortly before the target
is lost the tracker typically detects only a small part of the
target object and estimates a smaller bounding box than in
the frames before. The used base tracker SuperDiMP em-
ploys a search area that depends on the currently estimated
bounding box size. Thus, a partially visible target object
causes a small bounding box and search area. The problem
of a small search area is that it complicates redetecting the
target object, e.g., the target reappears at a slightly different
location than it disappeared and if the object then reappears
outside of the search area redetection is prohibited. Smaller
search areas occur more frequently when using the target
candidate association network because it allows to track the
object longer until we declare it as lost.

Hence, we use a procedure to increase the search area
if it decreased before the target object was lost. First, we
store all search are resolutions during tracking in an list a
as long as the object is detected. If the object was lost k
frames ago, we compute the new search area by averaging
the last k entries of a larger than the search area at occlu-
sion. We average at most over 30 previous search areas to
compute the new one. If the target object was not redetected
within these 30 frames with keep the search area fixed until
redetection.

B.3. Inference Details

In contrast to training, we use all extracted target candi-
dates to compute the candidate associations between con-
secutive frames. In order to save computations, we extract
the candidates and features only for the current frame and
cache the results such that they can be reused when com-
puting the associations in the next frames.

B.3.1 KeepTrack Settings

We use the same settings as for SuperDiMP but increase the
search area scale from 6 to 8 leading to a larger search are
(from 352 × 352 to 480 × 480) and to a larger target score
map (from 22× 22 to 30× 30). In addition, we employ the
aforementioned search area rescaling at occlusion and skip
running the target candidate association network if only one
target candidates with high target classifier score is detected
in the current and previous frame, in order to save compu-
tations.
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Memory Larger Search Candidate
Memory Search Area Association

Confidence Area Rescaling Network NFS UAV123 LaSOT

– – – – 64.4 68.2 63.5
X – – – 64.7 68.0 65.0
X X – – 65.3 68.4 65.5
X – X – 64.7 68.4 65.8
X X X – 65.2 69.1 65.8
X X X X 66.4 69.7 67.1

Table 2. Impact of each component in terms of AUC (%) on three
datasets. The first row corresponds to our SuperDiMP baseline.

Num GNN Num Sinkhorn
Layers iterations NFS UAV123 LaSOT FPS

– – 65.2 69.1 65.8 –
0 50 65.9 69.2 66.6 –
2 10 66.4 69.7 67.1 18.3
9 50 66.4 69.8 67.2 12.7

Table 3. Impact of each component of the Target Candidate Asso-
ciation Network in terms of AUC (%) on three datasets.

B.3.2 KeepTrackFast Settings

We use the same settings as for SuperDiMP. In particular,
we keep the search area scale and target score map reso-
lution the same to achieve a faster run-time. In addition,
we reduce the number of bounding box refinement steps
from 10 to 3 which reduces the bounding box regression
time significantly. Moreover, we double the target candi-
date extraction threshold τ to 0.1. This step ensures that we
neglegt local maxima with low target classifier scores and
thus leads to less frames with multiple detected candidates.
Hence, KeepTrackFast runs the target candidate association
network less often than KeepTrack.

C. More Detailed Analysis

In addition to the ablation study presented in the main
paper (Sec. 4.1) we provide more settings in order to assess
the contribution of each component better. In particular, we
split the term search area adaptation into larger search area
and search area rescaling. Where larger search area refers
to a search area scale of 8 instead of 6 and a search area res-
olution of 480 instead of 352 in the image domain. Tab. 2
shows all the results on NFS [18], UAV123 [32] and La-
SOT [15]. We run each experiment five times and report
the average. We conclude that both search area adaptation
techniques improve the tracking quality but we achieve the
best results on all three datasets when employing both at the
same time. Furthermore, we evaluate the target candidate
association network with different numbers of Sinkhorn it-
erations and with different number of GNN layers of the
embedding network or dropping it at all, see Tab. 3. We
conclude, that using the target candidate association net-
work even without any GNN layers outperforms the base-

line on all three datasets. In addition, using either two or
nine GNN layers improves the performance even further on
all datasets. We achieve the best results when using nine
GNN layers and 50 Sinkhorn iterations. However, using
a large candidate embedding network and a high number
of Sinkhorn iterations reduces the run-time of the tracker
to 12.7 FPS. Hence, using only two GNN layers and 10
Sinkhorn iterations results in a negligible decrease of 0.1 on
UAV123 and LaSOT but accelerates the run-time by 44%.

D. Experiments

We provide more details to complement the state-of-the-
art comparison performed in the paper. And provide results
for the VOT2018LT [24] challenge.

D.1. LaSOT and LaSOTExtSub

In addition to the success plot, we provide the normal-
ized precision plot on the LaSOT [15] test set (280 videos)
and LaSOTExtSub [15] test set (150 videos). The normal-
ized precision score NPrD is computed as the percentage of
frames where the normalized distance (relative to the target
size) between the predicted and ground-truth target center
location is less than a threshold D. NPrD is plotted over a
range of thresholds D ∈ [0, 0.5]. The trackers are ranked
using the AUC, which is shown in the legend. Figs. 1b
and 2b show the normalized precision plots. We compare
with state-of-the-art trackers and report their success (AUC)
in Tab. 4 and where available we show the raw results in
Fig. 1. In particular, we use the raw results provided by
the authors except for DaSiamRPN [49], GlobaTrack [23],
SiamRPN++ [27] and SiamMask [38] such results were not
provided such that we use the raw results produced by Fan et
al. [15]. Thus, the exact results for these methods might be
different in the plot and the table, because we show in the
table the reported result the corresponding paper. Similarly,
we obtain all results on LaSOTExtSub directly from Fan et
al. [14] except the result of SuperDiMP that we produced.

D.2. UAV123, OTB-100 and NFS

We provide the success plot over the 123 videos of the
UAV123 dataset [32] in Fig. 3a, the 100 videos of the OTB-
100 dataset [39] in Fig. 3b and the 100 videos of the NFS
dataset [18] in Fig. 3c. We compare with state-of-the-
art trackers SuperDiMP [8], PrDiMP50 [12], UPDT [3],
SiamRPN++ [27], ECO [10], DiMP [1], CCOT [11], MD-
Net [33], ATOM [9], and DaSiamRPN [49]. Our method
provides a significant gain over the baseline SuperDiMP
on UAV123 and NFS and performs among the top methods
on OTB-100. Tab. 5 shows additional results on UAV123,
OTB-100 and NFS in terms of success (AUC).
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Figure 1. Success and normalized precision plots on LaSOT [15]. Our approach outperforms all other methods by a large margin in AUC,
reported in the legend.

Keep Keep Alpha Siam Tr Super STM Pr DM Siam
Track Track Refine TransT R-CNN DiMP Dimp Track DiMP Track TLPG TACT LTMU DiMP Ocean AttN

Fast [41] [4] [35] [37] [8] [17] [12] [47] [28] [6] [7] [1] [46] [44]

LaSOT 67.1 66.8 65.3 64.9 64.8 63.9 63.1 60.6 59.8 58.4 58.1 57.5 57.2 56.9 56.0 56.0

Siam Siam PG FCOS Global DaSiam Siam Siam Siam Retina Siam
CRACT FC++ GAT NET MAML Track ATOM RPN BAN CAR CLNet RPN++ MAML Mask ROAM++ SPLT

[16] [40] [20] [30] [36] [23] [9] [49]† [5] [21] [13] [27]† [36] [38]† [43] [42]

LaSOT 54.9 54.4 53.9 53.1 52.3 52.1 51.5 51.5 51.4 50.7 49.9 49.6 48.0 46.7 44.7 42.6
Table 4. Comparison with state-of-the-art on the LaSOT [15] test set in terms of overall AUC score. The average value over 5 runs is
reported for our approach. The symbol † marks results that were produced by Fan et al. [15] otherwise they are obtained directly from the
official paper.
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Figure 2. Success and normalized precision plots on LaSOTExtSub [14]. Our approach outperforms all other methods by a large margin in
AUC, reported in the legend.
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Figure 3. Success plots on the UAV123 [32], OTB-100 [39] and NFS [18] datasets in terms of overall AUC score, reported in the legend.

Keep Keep Tr Super Pr Siam STM Siam Retina FCOS
Track Track DiMP TransT DiMP DiMP R-CNN Track DiMP KYS RPN++ ATOM UPDT MAML MAML Ocean STN

Fast [37] [4] [8] [12] [35] [17] [1] [2] [27] [9] [3] [36] [36] [46] [31]

UAV123 69.7 69.5 67.5 69.1 67.7 68.0 64.9 64.7 65.3 – 61.3 64.2 54.5 – – – 64.9
OTB-100 70.9 71.2 71.1 69.4 70.1 69.6 70.1 71.9 68.4 69.5 69.6 66.9 70.2 71.2 70.4 68.4 69.3
NFS 66.4 65.3 66.2 65.7 64.8 63.5 63.9 – 62.0 63.5 – 58.4 53.7 – – – –

Auto Siam Siam Siam Siam Siam DaSiam
Track BAN CAR ECO DCFST PG-NET CRACT GCT GAT CLNet TLPG AttN FC++ MDNet CCTO RPN ECOhc
[29] [5] [21] [10] [48] [30] [16] [19] [20] [13] [28] [44] [40] [33] [11] [49] [10]

UAV123 67.1 63.1 61.4 53.2 – – 66.4 50.8 64.6 63.3 – 65.0 – – 51.3 57.7 50.6
OTB-100 – 69.6 – 69.1 70.9 69.1 72.6 64.8 71.0 – 69.8 71.2 68.3 67.8 68.2 65.8 64.3
NFS – 59.4 – 46.6 64.1 – 62.5 – – 54.3 – – – 41.9 48.8 – –

Table 5. Comparison with state-of-the-art on the OTB-100 [39], NFS [18] and UAV123 [32] datasets in terms of overall AUC score. The
average value over 5 runs is reported for our approach.

D.3. VOT2018LT [25]

Next, we evaluate our tracker on the 2018 edition of the
VOT [26] long-term tracking challenge. We compare with
the top methods in the challenge [25], as well as more recent
methods. The dataset contains 35 videos with 4200 frames
per sequence on average. Trackers are required to predict a
confidence score that the target is present in addition to the
bounding box for each frame. Trackers are ranked by the
F-score, evaluated for a range of confidence thresholds. As
shown in Tab. 6, our tracker achieves the best results in all
three metrics and outperforms the base tracker SuperDiMP
by almost 10% in F-score.

E. Speed Analysis
Our method adds an overhead of 19.3ms compared to

the baseline tracker. Whereas target candidate extraction is

Keep Keep Siam Siam Super
Track Track LTMU R-CNN PGNet RPN++ DiMP SPLT MBMD DaSiamLT

Fast [7] [35] [30] [27] [8] [42] [45] [49, 25]

Precision 73.8 70.1 71.0 – 67.9 64.9 64.3 63.3 63.4 62.7
Recall 70.4 67.6 67.2 – 61.0 60.9 61.0 60.0 58.8 58.8
F-Score 72.0 68.8 69.0 66.8 64.2 62.9 62.2 61.6 61.0 60.7

Table 6. Results on the VOT2018LT dataset [25] in terms of F-
Score, Precision and Recall.

required for every frame, running the target candidate as-
sociation network is only required if more than one candi-
date is detected. Candidate extraction is relatively fast and
takes only 2.7 ms while performing candidate association
requires 16.6 ms. Where computing the candidate embed-
ding takes 10.0 ms, running the Sinkhorn algorithm for 10
iterations takes 3.5 ms and object association 3.1 ms. Thus,
we achieve an average run-time of 18.3 FPS for KeepTrack
and 29.6 FPS for KeepTrackFast when using SuperDiMP as
base tracker. We report this timings on a singe Nvidia GTX
2080Ti GPU.

E.1. Number of Candidates and Time Complexity

In practice, we found the number of target candidates to
vary from 0 up to 15 in exceptional cases. For frames with
less than 2 candidates, we naturally do not need to apply
our association module. Further, we observed no measur-
able increase in run-time from 2 to 15 candidates, due to
the effective parallelization. Therefore, we do not explicitly
limit the number of detected candidates.
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Time
#134 #135 #140 #142 #143

#76 #77 #87 #92 #93

Figure 4. Failure Cases: a very challenging case is when a distractor crosses the target’s location, since positional information is then of
limited use. The box represents the ground truth bounding box of the target object, where green indicates the the selected target candidates
corresponds to the sought target and red indicates that the tracker selected a candidate corresponding to a distractor object.

F. Failure Cases

While KeepTrack is particularly powerful when distrac-
tor objects appear in the scene, it also fails to track the tar-
get object in complex scenes, such as the examples shown
in Fig. 4.

The top row shows such a challenging case, where the
target object is the right hand of the person on the right (in-
dicated by [�] or [�]). KeepTrack manages to individu-
ally track all hands ( , , ) visible in the search area until
frame number 134. In the next frame, both hands of the
person are close and our tracker only detects one candidate
for both hands ( ). Thus, the tracker assigns the target id
to the remaining candidate. The tracker detects two candi-
dates ( , ) as soon as both hands move apart in frame 143.
However, now it is unclear which hand is the sought target.
If two objects approach each other it is unclear whether they
cross each other or not. In this scenario positional informa-
tion is of limited use. Hence, deeper understanding of the
scene and the target object seems necessary to mitigate such
failure cases.

The bottom row in Fig. 4 shows a similar failure case
where again a distractor object ( ) crosses the target’s ( )
location. This time, the tracker fails to extract the candidate
corresponding to the target from frame number 77 on wards.
The tracker detects that the target candidate previously as-
sumed to represent the target has vanished but the remaining
distractor object ( ) achieves such a high target score that
the tracker reconsiders its previous target selection and con-
tinues tracking the distractor object ( ) instead. Thus, the
tracker continues tracking the distractor object even if the
a target candidate for the sought target ( ) appears (frame
number 93).

G. Attributes

Tabs. 7 and 8 show the results of various trackers in-
cluding KeepTrack and KeepTrackFast based on different

sequence attributes. We observe that both trackers are su-
perior to other trackers on UAV123 for most attributes. In
particular, we outperform the runner-up by a large margin
in terms of AUC on the sequences corresponding to the fol-
lowing attributes: Aspect Ratio Change (+2.5/2.6%), Full
Occlusion (+1.8/1.9%), Partial Occlusion (+2.5/2.3%),
Background Clutter (+1.5/1.3%), Illumination Variation
(+1.7/1.5%), Similar Object (+1.8/1.1%). Especially, the
superior performance on sequences with the attributes Full
Occlusion, Partial Occlusion, Background Clutter and Sim-
ilar Object clearly demonstrates that KeepTrack mitigates
the harmful effect of distractors and allows to track the tar-
get object longer and more frequently than other trackers.
Fig. 3a shows a similar picture: KeepTrack is the most ro-
bust tracker but others achieve a higher bounding box re-
gression accuracy. In addition, Tab. 7 reveals that Keep-
Track achieves the highest (red) or second-highest (blue)
AUC on the sequences corresponding to each attribute ex-
cept for the attribute Out-of-View.

The attribute-based analysis on LaSOT allows similar
observations. In particular, KeepTrack and KeepTrack-
Fast outperform all other trackers by a large margin in
AUC on the sequences corresponding oth the following at-
tributes: Partial Occlusion (+1.8/1.5%), Background Clut-
ter (+2.3/1.2, Viewpoint Change (+1.6/2.3%), Full Oc-
clusion (+2.7/1.8%), Fast Motion (4.1/3.5%), Out-of-View
(+1.9/1.2%), Low Resolution (+3.4/3.4%). Moreover,
the superior performance is even clearer when comparing
to the base tracker SuperDiMP, e.g., and improvement of
+6.0/5.2% for Full Occlusion or +7.0/6.4% for Fast Mo-
tion. KeepTrack achieves the highest AUC score for ev-
ery attributed except two where KeepTrackFast achieves
slightly higher scores. Again, the best performance on se-
quences with attributes such as Background Clutter or Full
Occlusion clearly demonstrates the effectiveness of our pro-
posed target and distractor association strategy.
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Scale Aspect Low Fast Full Partial Background Illumination Viewpoint Camera Similar
Variation Ratio Change Resolution Motion Occlusion Occlusion Out-of-View Clutter Variation Change Motion Object Total

ATOM 63.0 61.9 49.5 62.7 46.2 58.1 61.4 46.2 63.1 65.1 66.4 63.1 64.2
DiMP50 63.8 62.8 50.9 62.7 47.5 59.7 61.8 48.9 63.9 65.2 66.9 62.9 65.3
STMTrack 63.9 64.2 46.4 62.2 48.9 58.0 68.2 46.2 61.9 70.2 67.5 58.0 65.7
TrDiMP 66.4 66.1 54.3 66.3 48.6 62.1 66.3 45.1 61.5 70.0 68.3 64.9 67.5
SuperDiMP 66.6 66.4 54.9 65.1 52.0 63.5 63.7 51.4 63.2 67.8 69.8 65.5 67.7
PrDiMP50 66.8 66.3 55.2 65.3 53.6 63.5 63.9 53.9 62.4 69.4 70.4 66.1 68.0
TransT 68.0 66.3 55.6 67.4 48.4 63.2 69.1 44.1 62.6 71.8 70.5 65.3 69.1
KeepTrackFast 68.4 68.8 57.3 67.2 55.4 66.0 65.9 55.4 65.6 70.3 71.2 67.9 69.5
KeepTrack 68.7 68.9 57.0 68.0 55.5 65.8 66.8 55.2 65.4 70.4 71.8 67.2 69.7

Table 7. UAV123 attribute-based analysis in terms of AUC score. Each column corresponds to the results computed on all sequences in the
dataset with the corresponding attribute.

Illumination Partial Motion Camera Background Viewpoint Scale Full Fast Low Aspect
Variation Occlusion Deformation Blur Motion Rotation Clutter Change Variation Occlusion Motion Out-of-View Resolution Ration Change Total

LTMU 56.5 54.0 57.2 55.8 61.6 55.1 49.9 56.7 57.1 49.9 44.0 52.7 51.4 55.1 57.2
PrDiMP50 63.7 56.9 60.8 57.9 64.2 58.1 54.3 59.2 59.4 51.3 48.4 55.3 53.5 58.6 59.8
STMTrack 65.2 57.1 64.0 55.3 63.3 60.1 54.1 58.2 60.6 47.8 42.4 51.9 50.3 58.8 60.6
SuperDiMP 67.8 59.7 63.4 62.0 68.0 61.4 57.3 63.4 62.9 54.1 50.7 59.0 56.4 61.6 63.1
TrDiMP 67.5 61.1 64.4 62.4 68.1 62.4 58.9 62.8 63.4 56.4 53.0 60.7 58.1 62.3 63.9
Siam R-CNN 64.6 62.2 65.2 63.1 68.2 64.1 54.2 65.3 64.5 55.3 51.5 62.2 57.1 63.4 64.8
TransT 65.2 62.0 67.0 63.0 67.2 64.3 57.9 61.7 64.6 55.3 51.0 58.2 56.4 63.2 64.9
AlphaRefine 69.4 62.3 66.3 65.2 70.0 63.9 58.8 63.1 65.4 57.4 53.6 61.1 58.6 64.1 65.3
KeepTrackFast 70.1 63.8 66.2 65.0 70.7 65.1 60.1 67.6 66.6 59.2 57.1 63.4 62.0 65.6 66.8
KeepTrack 69.7 64.1 67.0 66.7 71.0 65.3 61.2 66.9 66.8 60.1 57.7 64.1 62.0 65.9 67.1

Table 8. LaSOT attribute-based analysis. Each column corresponds to the results computed on all sequences in the dataset with the
corresponding attribute.
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