
A. Introduction to B-Reps

Figure 12: The B-Rep data structure: Faces are defined by para-
metric surfaces, bounded by loops of trimming curves. Each trim-
ming curve is owned by a topological entity called a coedge, which
stores adjacency relationships between faces. Figure from [38].

B-Reps are loosely analogous to 2D Scalable Vector
Graphics (SVGs) for 3D. The precise implementation de-
tails vary between different CAD softwares, below we de-
scribe the general principles relevant to all B-Reps.

As shown in Figure 12, B-Reps are collections of para-
metric curves and surfaces along with topological informa-
tion which describes the adjacency relationships between
them [38]. They are typically used to describe closed vol-
umes (solids), but can also represent 2D manifolds (sheets)
and curve networks (wire bodies). Each face of a B-rep
body is defined by a parametric surface which is divided
into “visible” and “hidden” regions by a series of trimming
loops. The loops comprise an ordered cycle of coedges,
which store pointers to “mating” coedges on adjacent faces.
The loop ordering and coedge-coedge adjacency informa-
tion provides a full description of the body’s topology, while
the parametric curves and surfaces provide the geometric
information [26].

B-Reps differ from point clouds and meshes since they
are precise representations with continuous smooth surfaces
and edge curves — they are not sampled/discrete. Conse-
quently, complex solids may be expressed with low memory
requirements without loss of detail [21].

For further information see [38, 26, 21].

B. Few Shot Learning
Figure 14 shows the absolute mean Precision@10 scores

over a range of number of positive and negative examples
of each of the unseen fonts we tested. These in conjunction
with the font shown in Figure 8 (left) are used to calculate
the mean gain shown in Figure 8 (right). Examples of each
font are given in Figure 13. 1 positive and 0 negative indi-
cates baseline using equal layer weights.

For the most visually distinct fonts (i.e. ‘Vampiro One’

and ‘Vast Shadow’), the equal weights baseline is high-
est. The amount of improvement is dependant on the self-
consistency of style within the font and the number of simi-
lar fonts in the test set. We observe greater self-consistency
within ‘Vampiro One’ and ‘Vast Shadow’ while being dis-
tinct from the rest of the test set. While the other fonts still
show improvement, we expect lower results due to their
inconsistency or lack of distinct stylistic features, i.e. in
‘Stalemate’ the ‘m’ and ‘s’ appear to be stylistically com-
patible, but the max curvatures of the ‘m’ are much greater
than in the ‘s’ - the style is not obviously the same.
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C. Unsupervised Pre-training

UVStle-Net: 3 Layers UVStyle-Net: 4 LayersQuery
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Figure 15: Comparison of top-5 queries with different weights
for UVStyle-Net on ABC dataset with unsupervised pre-training.
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Figure 16: Top-5 query results for ABC dataset from UVStyle-Net
with unsupervised pre-training. w = [0, 0, 0, 0, 0, 0, 1]>. Weight-
ing the upper layers of the network moves the definition of style
closer to content, where the distance measure is more about the
general shape and size and global features, and less about the fine
details and local features.
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content results in layer weight distributed over the upper layers.
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D. ABC Style Labels
There is a fundamental lack of publicly available la-

beled B-Rep data, with no existing B-Rep datasets con-
taining style labels. To enable quantitative evaluation of
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Figure 18: Top-5 queries for PSNet* with cosine distance.
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Figure 19: Examples of each ABC style subset classes. Each style
is selected to be visually distinct, and while some classes contain
the same types of objects, i.e., ‘Tubular’, the overall shapes (the
content) are diverse.

ABC Subset Examples

Flat/Electric 389/58
Free Form/Pipe 241/24
Angular/Rounded 834/106

Table 3: Manually labeled ABC style subsets.

our method and promote further work in this area we con-
tribute a set of manually assigned style labels for a sub-
set of the ABC solid models. We selected categories with
distinct styles while containing diverse content. Examples
of each category are shown in Figure 19 and details of
the class sizes in Table 3. These labels are available at
github.com/AutodeskAILab/UVStyle-Net.

E. SolidLetters Test Set Generation
For SolidLetters, the training data is generated as per

[16] using code and font wires provided by the authors. The
key steps are illustrated in Figure 20.

The held-out test set is regenerated to strengthen the as-
sociated style labels by removing inconsistent sources of
randomness within font classes. The extrusion depth and
angle are fixed across all fonts. Filleting size is also fixed,

https://github.com/AutodeskAILab/UVStyle-Net


(a) 2D Font wire (b) Select random extrude angle

(c) Extrude (d) Fillet

Figure 20: Steps for generation of SolidLetters dataset. For test
set, extrude angle and fillet amount are fixed. Figure from [16]

and is applied only to fonts where it possible to apply it to
all examples of that font. Filleting is not possible for some
examples due to the complexity of the solids. If filleting is
unsuccessful on any example, all examples of that font are
left without fillets.

All SolidLetters data used is freely available at
github.com/AutodeskAILab/UVStyle-Net.

F. Model Details
For MeshCNN we use the author’s code from

https://github.com/ranahanocka/MeshCNN,
for Pointnet++ we use https://github.com/
erikwijmans/Pointnet2_PyTorch. All experi-
ments performed on AWS p3.2xlarge.

Table 4 shows details about the model hyper parame-
ters and meta information. For MeshCNN, we remeshed
the data to 15000 edges per solid and for Pointnet++ we
used their multi-scale grouping (MSG) setup. Other param-
eters and architecture choices not mentioned here, are set to
default. All point clouds are sampled with 1024 points.

For PSNet* we use the Pointnet implementation from
https://github.com/WangYueFt/dgcnn and ex-
tract the Gram matrices from the first 4 layers as detailed in
[6]. While PSNet works with geometry and colour, we use
only the geometric part in our comparisons.

In Table 5 we compare the computational costs of each
encoder.

Model LR N F BS Opt

UV-Net 1e-4 BN 7 128 Adam
PSNet* 1e-4 BN 3 128 Adam
Pointnet++ 1e-3 BN 6 32 Adam
MeshCNN 2e-4 GN 5 4 Adam

Table 4: Hyper-parameters and meta information about the models
for SolidLetters runs. LR denotes learning rate, N type of norm
(i.e. batch norm or group norm), F input feature dimension, BS
batch size and Opt, the type of optimiser used.

Encoder L Parameters Time Size

UV-Net 7 645,596 93min/88s 199 KB
PSNet* 5 813,914 165min/115s 1.08MB
Pointnet++ 22 1,746,420 43min/603s 3.32 MB
MeshCNN 5 1,322,982 29hr/38min 305 KB

Table 5: Comparison of 3D encoder methods. L is total number
of layers (including features), times given are pre-training/style
inference on complete SolidLetters test set. Size is the memory
required for a single style embedding (containing one Gram per
layer) for a single solid — note this is not dependent on the size
of the input solid. For style inference UV-Net is the most com-
pute and memory efficient. MeshCNN suffers from small batch
size due to necessarily large meshes, and Pointnet++ suffers from
larger Gram matrices.
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