
1. Details regarding Point cloud Transformer
layer proposed in [2]

Here, we provide additional low-level details relevant to
our point cloud learning experiments.

LetQ,K, V denote the query, key and value matrices re-
spectively, generated by linear transformations of the input
features Fin ∈ RN×de as follows:

(Q,K, V) = Fin · (Wq,Wk,Wv) (1)

Q,K ∈ RN×da , V ∈ RN×de (2)

Wq,Wk ∈ Rde×da , Wv ∈ Rde×de (3)

whereWq,Wk andWv are the shared learnable linear trans-
formations, and da is the dimension of the query and key
vectors. Note that da may not be equal to de.

Next, we calculate the attention weights:

Ã = (α̃)i,j = Q×KT (4)

The weights are then normalized to give A = (α)i,j :

ᾱi,j =
α̃i,j√
(da)

(5)

αi,j = softmax(ᾱi,j) =
exp(ᾱi,j)∑
k exp(ᾱi,k)

(6)

The self-attention output Fsa is computed as:

Fsa = A · V (7)

In [2], they design an offset-attention which is used on
top of Fsa. After computing Fsa, the final output of the
transformer layer is specified as

Fout = FF(Fin − Fsa) + Fin (8)

where FF is the feed-forward layer comprised of the linear
layer, normalization layer and nonlinear layer.

2. Details regarding GNNs for few-shot learn-
ing proposed in [3]

Here, we provide additional low-level details relevant to
our few-shot learning experiments.

Let G = (V, E ; T) be the graph constructed with sam-
ples from the task T , where V = {Vi}i=1,...,|T | and E :=
{Eij}i,j=1,...,|T | denote the set of nodes and edges of the
graph, respectively. Let vi and eij be the node feature
of Vi and the edge feature of Eij , respectively. We take
|T | = N ×K + T to be the total number of samples in the
task T . Each ground-truth edge-label yij is defined by the
ground-truth node labels as yij = 1 if yi = yj ; 0 otherwise.

In the proposed GNN in [3], in the experiments, node
feature update and edge feature update are done iteratively

for L layers. The node features are initialized by the out-
put of the convolutional embedding network and the edge
features represent the strengths of the intra- and inter-class
relations between two connected nodes. We treat the node
feature update function as f and use our TMDlayer on top
of it. In [3], the proposed node feature update function is:

vli = glv([
∑
j

ẽl−1
ij1 v

l−1
j ||

∑
j

ẽl−1
ij2 v

l−1vj]; θ
j
v) (9)

where each edge feature eij = {eijd}2d=1 is a 2-dimensional
vector ẽijd =

eijd∑
k eikd

, and gld is the feature transformation

network with the parameter set θlv .

3. Details regarding deep active contour model
Here, we provide additional details relevant to our seg-

mentation experiments with our proposed deep active con-
tour model. In our segmentation experiments, we treat
the entire update module introduced here as f and use our
TMDlayer on top of it.

Overview. Given an input image I , our model learns to
perform weighted length minimization and learns feature-
value sets in the image region, which are then used to per-
form T steps of a level set update from the initial configura-
tion φ0. Our framework also enables a semi-supervised seg-
mentation once we add a modified variational energy term
which our level set updates will explicitly optimize as a loss
function (for the unlabeled images). The level set update
takes place within the network, which seamlessly enables
end-to-end training of our whole network.

3.1. Weighted Length Minimization

In active contour models, a length minimization term
is used to yield curvature-based evolution that is responsi-
ble for a smooth curve representation of the desired object
boundary. More precisely, one uses the arc length mini-
mization [1]:

inf
C

∫ 1

0

|C ′(s)|ds (10)

However, minimizing the curve length alone will not suffice
as a means to segment object boundaries. A weighted curve
length is more meaningful in this context, especially if the
weighting function is derived from image data and sensi-
tive to edges in the image. Thus, Caselles et al. proposed
geodesic active contour (GAC), which can be viewed as a
weighted length minimization written as,

inf
C

∫ 1

0

g(C(s))ds (11)

where g(C(s)) := 1
1+|∇Gσ∗I|2 , Gσ is a Gaussian with a

variance parameter σ. Note that this choice of weight-
ing function is hand-crafted like so many others that have

Figure 1: Architecture of our model: The image is fed into the CNN encoder to produce initial level set function and needed
parameters. The parameters could be chosen to be a learned map or simply a constant. The updating module will evolve the
level set function using initial φ0 and the parameters, producing the final φT . Within the updating module, in every step the
color encoder learns C1, C2 from the image and the current φt. The images of φ0 and φT are binarized for a clear view. Our
TMDlayer is added to every layer in the updating module. Here we only show once for clear view.

been used in literature. Indeed, such hand-crafted weight-
ing functions in general can be the right choice for a small
class of images and tasks but is often suboptimal in general.
To overcome this limitation, we replace the image gradient
based weighting function g(C(s)) with a term parameter-
ized by deep neural networks thereby allowing the weight-
ing function to be data driven as follows:

inf
C

∫ 1

0

µ(C(s))ds where µ(·) = CNN(I) (12)

where µ(·), which can be viewed as a 2-D function in the
discrete case, is parameterized using a convolutional neural
network. As we see in our experiments, this leads to better
segmentation results.

In a level set framework, this weighted length minimiza-
tion is usually performed by solving the strong form given
by the following PDE:[

∂φ

∂t

]
length

= div
(
µ
∇φ
|∇φ|

)
|∇φ| (13)

3.2. Chan-Vese in Learned Feature (Latent) Space

We now develop a Chan-Vese based active contour en-
ergy term that is set in a latent space i.e., a feature space
where the features are learned by a deep neural network
(DNN). To make the description simple, we will derive the
loss function for a single image I (or X in the main paper),
and so in this section (x, y) represents 2D pixel coordinates
in X . As usual, the total loss function is given by sum-
ming over the examples in the training set. Let us first recall

the classical Chan-Vese active contour energy functional [1]
given by,

F (c1, c2, C) =λ1

∫
in(C)

|I(x, y)− c1|2 dxdy+ (14)

λ2

∫
out(C)

|I(x, y)− c2|2 dxdy (15)

In (14), c1 is the color averaged over pixels inside the con-
tour C and c2 is the color averaged over the pixels outside.

c1 =

∫
1φ>0 · φdxdy∫
1φ>0dxdy

, c2 =

∫
1φ<0 · φdxdy∫
1φ<0dxdy

(16)

This assumption has been shown to work well for sim-
ple images, but for most natural images that we may want
to segment, this assumption may be too restrictive. In this
paper, we replace the weighting factors (I(x, y) − ci)2 in
the Chan-Vese energy with an energy in the learned feature
space obtained using a deep network. The intuition here is
that rather than perform variance minimization in the na-
tive space, we can perform this operation in a learned fea-
ture space which better captures the unknown homogene-
ity property of each region within the image. Note that the
transformation from image space to the feature space can be
achieved by simply modifying original scalar λ into a spa-
tially variant map. Thus, the final energy functional of our

2

active contour is given by,

F (c1, c2, C) =

∫
in(C)

λ1(x, y) · |I(x, y)− c1|2 dxdy

+

∫
out(C)

λ2(x, y) · |I(x, y)− c2|2 dxdy

(17)

Another observation one can make is that if we restrict
λ(·) to learn a nonnegative function, it becomes similar to
the localized kernel weighting function. Thus, the func-
tional based on the image data denoted by [F (φ)]C1 be-
comes:∑
i=1,...,n

∫
Ω

λ1i(x, y) · (|I(x, y)− C1i|2)Hε(φ)dxdy︸ ︷︷ ︸
[F (φ)]C1

(18)

where C1i refers to the ith channel of C1 (e.g., there are
3 channels in a color image) and we follow [1] to define a
Heaviside function Hε which acts as an differentiable ap-
proximation to the indicator function 1 defined as,

Hε(·) :=
1

2

(
1 +

2

π
arctan

(·
ε

))
, (19)

where ε is a specified constant (hyperparameter).
After deriving the corresponding Euler-Lagrange equa-

tion of (18) and parameterizing the descent direction with
an artificial time parameter t ≥ 0, we obtain,

[
∂φ

∂t

]
C1

= −δε(φ)

 ∑
i=1,...,n

λ1i(x, y) · (|I(x, y)− C1i|2)

(20)

Similarly, we can have an energy and corresponding evo-
lution equation for the region outside outside the active con-
tour,[
∂φ

∂t

]
C2

= δε(φ)

 ∑
i=1,...,n

λ2i(x, y) · (|I(x, y)− C2i|2)

(21)

where we follow [1] to define δε = H ′ε.

3.3. Initial Level Set Function

Active contour models usually need manual initializa-
tion, which often influences the quality of the final result.
This makes it impractical in large-scale applications. We
propose to learn the initial level set function by using a seg-
mentation neural network. That is,

φ0 = f(I) (22)

where I is the given image and f denotes an encoder CNN.
We see in our experiments that despite the “multi-stage”
nature of this setup (CNN followed by level set updates),
it can indeed be trained end-to-end.

3.4. The Full Evolution Model

The full (’total’) model evolution is simply the sum of all
the terms above:[

∂φ

∂t

]
total

=

[
∂φ

∂t

]
C1

+

[
∂φ

∂t

]
C2

+

[
∂φ

∂t

]
length

(23)

3.5. Training Procedure

For training, we first learn an initial level set function φ0

from an encoder CNN shown in (22). Then, we perform T
update steps according to (23). The final update after φT
steps will be used to calculate the loss based on the ground
truth segmentation mask label MGT

Loss = CE(Hε(φT),MGT) (24)

where CE refers to the standard cross-entropy loss.

References
[1] Tony F Chan and Luminita A Vese. Active contours without

edges. IEEE Transactions on image processing, 10(2):266–
277, 2001.

[2] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud trans-
former. arXiv preprint arXiv:2012.09688, 2020.

[3] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D
Yoo. Edge-labeling graph neural network for few-shot learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11–20, 2019.

3

