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Figure 1. Overview of the proposed model. ⊗ represents the
Hadamard Product.

1. Detailed Model Structure

Fig. 1 shows our model’s overview, where it contains
the student model and teacher model. The teacher model
shares the same structure as the student model with Feature
Extractor, Binary Segmentation, Density Regressor, except
the Approximated Segmentation module. We will elaborate
on each of them as follows.

We adopt the first 13 layers of the VGG-16 [9] as the
Feature Extractor (backbone), which is the same as [5, 4, 7,
12, 6]. The structure of the student model is shown in Fig.
2. The lower stage of the backbone model retains the high-
resolution structure features, and the higher stage features
keep rich semantic information. By multi-level aggregating
features from the backbone, the binary segmentation and
density regressor can obtain affluent semantic and spatial
information, which is essential for density map regression
and binary segmentation. Previous methods such as [15,
8, 1], have proved that binary segmentation can supply the
spatial information into the density regressor branch. We
perform Hadamard Product from the binary segmentation’s
logits to the density regressor’s intermediate feature maps.

2. More Results Comparison

Making semi-supervised learning for crowd counting
practical is essential. In the manuscript, instead of present-
ing a relatively impractical performance with 5 %, 10 %
or 20 % labeled training data, we report the crowd counting
results with 50 % labeled training data, where our model un-
der a semi-supervised manner achieves comparable perfor-
mance with previous state-of-the-art methods under fully-
supervised manner. However, to make a comprehensive
comparison, we compare our model with previous semi-
supervised approaches [7, 10], and the Baseline model [12]
under a different number of training labeled data settings on
two datasets. Because they did not provide crowd counting
results on the JHU-Crowd [11] and the NWPU-Crowd [13]
datasets, which are the largest two public crowd counting
datasets containing challenging scenes. We only present the
performance comparison on the ShanghaiTech (SHA, SHB)
[14] and the QNRF [2] dataset.

To this end, we follow the same training labeled data set-
ting as [7] (10 % or 20 %) and [10] (5 %) on two datasets,
respectively. The results of [7, 10] are retrieved from their
published paper, and we re-implement the Baseline model
[12] through their public code. Note that, [7] adopts the
same backbone (VGG-16 [9]) as our model; they build their
model based on CSRNet [4], which achieves a comparable
performance under fully-supervised manner with ours (i.e.
Ours (Fully) in the Tab.1 of the manuscript). Furthermore,
[10] adopts a more powerful backbone, producing supe-
rior performance than Ours (Fully) under fully-supervised
manner. So the comparison with them in a semi-supervised
manner can be seen as straightforward and reasonable.

Specifically, Tab. 1 shows the performance comparison
under 10 % of labeled training data for ShanghaiTech [14]
(SHA and SHB) dataset, and 20 % labeled training data for
QNRF [2] dataset. Our method achieves 2.0 % and 2.1
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Figure 2. Structure of the student model of the proposed framework. We did not draw the teacher model’s structure because it shares the
same structure with the Backbone, the Density Regression Module, the Binary Segmentation Module of the student model. The shape of
the feature map after each operation is shown in the red bracket as (Height, Width, Channel).

% performance gain in terms of MAE compared with [7]
on SHA, QNRF datasets, respectively; we achieve the same
MAE but lower RMSE on SHB compared with [7]. Further-
more, Tab 2 demonstrates the results comparison under 5 %
labeled training data for two datasets. Our model achieves
10.0 % and 10.1 % lower MAE compared with [10] on

SHA, QNRF datasets, respectively; we achieve comparable
MAE but lower RMSE on SHB compared with [10].



Methods SHA SHB QNRF
MAE RMSE MAE RMSE MAE RMSE

Mean-Teacher [12] (Baseline) 100.10 160.7 25.9 41.8 168.7 283.0
Liu et al. [7] 86.9 148.9 14.7 22.9 135.6 233.4

Ours 85.1 145.2 14.7 22.5 132.8 229.3
Table 1. Results comparison under 10 % of labeled training data on SHA and SHB; 20% of labeled training data on QNRF. Performance is
reported with Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). Our model achieves consistent superior performance
over the Baseline [12] and [7] on two datasets in terms of RMSE.

Methods SHA SHB QNRF
MAE RMSE MAE RMSE MAE RMSE

Mean-Teacher [12] (Baseline) 104.9 167.5 28.1 44.0 171.9 288.8
Sindagi et al. [10] 102.0 172.0 15.7 27.9 160.0 275.0

Ours 91.8 148.1 15.6 25.9 143.9 253.5
Table 2. Results comparison under 5 % of labeled training data on SHA, SHB, and QNRF. Performance is reported with Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE). Note that, [10] adopts a more powerful backbone than ours; however, our model
still achieves consistent superior performance over the [10] on SHA and QNRF and comparable performance in terms of MAE and RMSE
on SHB.

3. More Ablation Studies

We perform extensive experiments to demonstrate that
our model is robust to hyper-parameter settings, such as the
coefficients of the loss function, threshold of ‘hard’ uncer-
tainty map and weights of ‘soft’ uncertainty map.

Ablation on Transformation Layer: We perform sev-
eral experiments to analyse the impact of the proposed
transformation layer (Trans). In detail, we remove the trans-
formation layer and inherent consistency loss (Lc′ ), and
keep the rest components in our model. Then we employ the
transformation layer, and Lc′ upon (1) labeled data only, (2)
unlabeled data only, (3) both of the labeled and unlabeled
data to demonstrate the performance gain. Tab.3 shows that
applying transformation layer only on the unlabeled data
can gain close results to ours, and only applying transfor-
mation layer on the labeled data results in average 4.4%
performance decline via MAE on two datasets compared
with ours. The above proves that the performance gain of
our model in terms of the proposed differential transforma-
tion layer is mainly from the unlabeled data.

Ablation on the coefficients of loss function We per-
form extensive experiments to demonstrate that our model
is robust to hyper-parameter settings, such as the loss func-
tion’s coefficients, threshold of ‘hard’ uncertainty map and
weights of ‘soft’ uncertainty map.

Ablation on the coefficients of loss function We eval-
uate the counting performance with different values of the
coefficient α, which is used to balance between the main
task (density regression) and surrogate task (binary segmen-
tation) in the loss function. In detail, we study the effect
of the value of α from 0.001 to 1. Tab.4 shows that our
model is robust to this hyper-parameter and achieves the
best counting performance in terms of mean absolute er-

ror (MAE) and root mean square error (RMSE) on the two
datasets when α = 0.1.

Methods SHA JHU-Crowd
MAE RMSE MAE RMSE

w/o Trans 74.8 131.0 89.3 301.2
w/ Trans on Label 73.2 129.5 86.8 296.3

w/ Trans on unlabeled 70.7 123.9 82.1 293.4
w/ Trans on both (ours) 68.5 121.9 80.7 290.8

Table 3. Ablation study on the impact of the proposed differential
transformation layer. When applying the transformation layer on
both the unlabeled and labeled data, ours achieves average 9.1%
performance gain than the model without transformation layer via
MAE on two datasets.

Ablation on the threshold of ‘hard’ uncertainty map
We adopt a time-dependent Gaussian ramp-up paradigm
[3] to ramp up the threshold of the ‘hard’ uncertainty Us

from an initial value of 0 to the maximum uncertainty value
Umax (i.e. ln 2 in our work), along with the training pro-
cess. We conduct several experiments to select the value of
Us on SHA and JHU-crowd datasets. Note that, the initial
threshold value Us cannot be too large (i.e. Umax) or too
small (i.e. 0), because the ‘hard’ uncertainty mechanism
hardly filters out uncertain regions or filters out most rela-
tively certain regions during the beginning training period.
This will result in the counting performance reduction as the
‘hard’ uncertainty mechanism barely works, as illustrated in
Tab.5. Our model achieves the best counting performance
in terms of MAE and RMSE on the two datasets when Us

is equal to 3/4 Umax.
Ablation on the weights of ‘soft’ uncertainty map We

perform several experiments to evaluate the counting per-
formance with different weight values M of the ‘soft’ un-
certainty maps. In detail, we change the value of M from
3 to 11 and keep the rest of the components the same in



Methods SHA JHU-Crowd
MAE RMSE MAE RMSE

α = 0.001 70.3 123.6 83.1 292.5
α = 0.01 69.2 123.1 81.9 292.0
α = 0.5 68.8 122.0 81.1 291.7
α = 1 69.5 122.7 82.3 290.8

α = 0.1 (ours) 68.5 121.9 80.7 290.8
Table 4. Performance comparison of different coefficients α in
the loss function. The proposed model is robust to this hyper-
parameter as the counting performance is very consistent for each
of the two datasets.

Methods SHA JHU-Crowd
MAE RMSE MAE RMSE

Us = 0 73.0 130.1 85.1 295.6
Us= 1/4 Umax 70.5 125.1 83.7 295.9
Us = 1/3 Umax 69.1 122.3 81.4 291.5
Us = 1/2 Umax 68.8 122.8 82.1 291.7
Us = 2/3 Umax 68.7 122.0 81.2 291.6
Us = Umax 72.8 129.7 84.7 295.4

Us = 3/4 Umax (ours) 68.5 121.9 80.7 290.8
Table 5. Ablation study on the effect of the threshold in the ‘hard’
uncertainty map. It shows that the proposed model can achieve
comparable counting performance when Us ranges from 1/3 Umax

to 3/4 Umax. This proves that the proposed model is robust to Us.

our framework. Tab.6 shows that our model is robust to
this hyper-parameter and achieves the best counting per-
formance via MAE and RMSE on the two datasets when
M = 7.

Methods SHA JHU-Crowd
MAE RMSE MAE RMSE

M = 3 69.8 122.9 81.8 291.7
M = 5 69.1 122.3 81.0 291.1
M = 9 68.8 122.0 80.7 290.9

M = 11 70.2 123.5 82.3 292.2
M = 7 (ours) 68.5 121.9 80.7 290.8

Table 6. The effect of the hyper-parameter weights M on the ‘soft’
uncertainty map. Our model achieves consistent counting per-
formance with M ranging from 3 to 11 on the two datasets via
MAE and RMSE. The best counting performance is achieved with
M = 7.

4. More Qualitative Results
We present more qualitative results of the binary seg-

mentation predictions (Seg), approximated binary segmen-
tation maps, density map predictions, ‘hard’ and ‘soft’
uncertainty maps. Fig.3 shows that our model can pro-
duce accurate counting performance compared with the
ground truth. The corresponding consistent segmentation
predictions and the approximated segmentation predictions
demonstrate the effectiveness of the proposed differential

transformation layer. The ‘hard’ and ‘soft’ uncertainty
maps indicate reasonable uncertain regions (i.e. crowd
boundaries) because the complex backgrounds make it hard
for the model to distinguish the crowd boundaries.
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Figure 3. Qualitative results of the binary segmentation predictions, approximated binary segmentation maps, density map predictions,
‘hard’ and ‘soft’ uncertainty maps. In the ‘hard’ uncertainty maps, the yellow pixels represent uncertain regions, and the black pixels are
certain regions. In the ‘soft’ uncertainty maps, the color map shows the confidence of the density predictions in different regions of the
image, where the value of 1 represents low confidence while 7 is high confidence.
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