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A. Appendix
A.1. Implementation details

Dataset pre-processing. The released VoxCeleb2
dataset [1] contains pre-processed videos to have a center
crop around the face. We uniformly sample 10 frames
from each video and obtain the facial landmarks using
an off-the-shelf facial landmarks detector [2]. Once the
landmarks are obtained we use the same procedure as [3] to
connect the facial landmarks to obtain contours for different
face parts (e.g., eyes, nose, lips . . . etc. ). We observe that
the facial landmarks extraction fails for a small fraction of
videos, which we opted to ignore. We also segment each
frame using the face parsing tool provided by [4] to obtain
the oracle segmentation maps for pre-training the layout
prediction network. The face parsing network performs
poorly on VoxCeleb2 frames due to the domain gap, in
terms of image resolution and the distribution of head
poses, between the datasets used to train the face parsing
network [4], and the cropped VoxCeleb2 videos. We observe
that the face segmentation network [4] better captures
different details at different resolutions. For example the
segmentation result at the original VoxCeleb2 resolution
better captures larger regions like the hair, neck and clothes.
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Figure 1: Identity similarity metric (ID-SIM) for the single-shot
setting across three test subsets representing low, medium and high
variance between the source and target poses. The performance gap
widens in our favor as the pose variance increases.

On the other hand, upsampling the frame to the resolution
used for training the segmentation network [4] gives better
segmentation results for the finer and smaller regions like
the nose, eyes, mouth, and ears. So, to improve the oracle
segmentations, we segment each frame twice at 256x256
and 512x512 resolutions and merge the coarse and fine
semantic classes from both results.

Encoder networks. We use a resnet encoder for both the
layout and style encoders {El, Es}. The encoder architec-
ture has 5 downsampling blocks, followed by a fully con-
nected layer that generates a 512-dimensional latent code.
The architecture for the residual blocks is borrowed from [5],
with replacing average-pooling with blur-pooling. We use
32 feature maps at the first encoder layer and double this
number after each downsampling block with a maximum of
512 feature maps. We follow [3] and concatenate the facial
landmarks to the few-shot RGB images before feeding them
to the encoder.

Layout generator. We use a traditional UNet architec-
ture [6] with residual blocks. The residual blocks are
borrowed from [5] with replacing BatchNorm with In-
stance Norm and applying adaptive instance normalization
(AdaIN) [7]. The smallest and largest number of feature
maps are 32 and 512 respectively, and we use blur-pool and



Figure 2: Averaging latent codes from multi-shot inputs success-
fully filters out transient occluders and maintains only the desired
information for novel view head synthesis.

bilinear upsampling in the downsampling and upsampling
blocks respectively. The output spatial layout is a 19-channel
one-hot label map.

Image generator. We use a SPADE generator architec-
ture [8] with replacing BatchNorm with Instance Norm. We
also use 32 feature maps at the last generator layer and 64
feature maps in each SPADE block, compared to 64 and
128 feature maps respectively in the original architecture [8].
The input to each SPADE block is the concatenation of the
predicted layout map and the facial landmarks.

Discriminator. We borrow the architecture of the discrim-
inator network from [9], with reducing the smallest number
of feature maps from 64 to 32. We also use a non-saturating
logistic loss with gradient penalty [10].

Training. We follow [11] and use equalized learning rate
in all of our networks. We pre-train the layout prediction
network for 2 epochs, followed by training the full pipeline
for 8 epochs. Our best model was left to train for an extra 5
epochs, which mainly improves the FID score, while slightly
improving the other quantitative metrics as well. We use
an Adam optimizer [12] with β1 = 0, β2 = 0.999, and a
learning rate of 0.001 for all networks. We linearly decay
the learning rate by a factor of 100 during the last epoch. For
more implementation and training details, we will release
the code and training scripts at http://www.cs.umd.
edu/~mmeshry/projects/lsr/.

A.2. Robustness to pose variation

Here we investigate the robustness of different methods
against the pose variation between the source and the target

Figure 3: RGB regularization during the segmentation pre-training
helps rectify many of the segmentation errors in the oracle segmen-
tation and leads to generating clean segmentation maps.

images. First, we cluster the test set into low, medium and
high pose variance based on the mean normalized keypoint
difference (NMKE) between the source and target ground
truth images. Then we compute the identity similarity metric
(ID-SIM) per each cluster for the single-shot setting and
report the results in figure 1. The performance gap between
our method and the baselines widens as the pose variance
increases, indicating that our method has better robustness
against pose variation. Note that we report the results only
for the single-shot setting, where the performance gap with
the FOMM baseline [13] is close. However, our method
significantly outperforms FOMM in the multi-shot setting,
as we show in Section A.5.1.

A.3. Effect of latent averaging

Given K-shot inputs, we follow [3] and obtain a single
layout and style latents {zl, zs} by averaging the K layout
and style latents computed from the inputs respectively. We
observe that averaging the K latents cancels out view-specific
information and transient occluders, and successfully main-
tains the implicit 3D information needed for novel view head
synthesis. Figure 2 shows some examples that highlight this
effect. The single-shot source images show some transient
occluders like the subjects’ hand or news bar, which in turn
corrupts our single-shot output. However, increasing the
inputs to four frames successfully filters out the transient
occluders and results in clean outputs.

A.4. Multi-task layout pre-training

Pre-training the layout prediction network requires oracle
segmentation maps as pseudo ground truth. However, we ob-



m
et

a-
le

ar
ne

d 
(8

)

Source LPD FSTH Ours

m
et

a-
le

ar
ne

d 
(1

)
fin

e-
tu

ne
d 

(8
)

m
et

a-
le

ar
ne

d 
(8

)

Source LPD FSTH Ours

m
et

a-
le

ar
ne

d 
(1

)
fin

e-
tu

ne
d 

(8
)

Figure 4: Extending Figure 5 of the main paper. More results comparing our performance to the few-shot baselines with respect to increasing
the the K-shot inputs and applying subject fine-tuning.

Table 1: Comparison with the FOMM baseline [13]. While FOMM
cannot benefit from multiple input frames, our method shows a
significant improvement over FOMM with as few as 4-shot inputs.

Method PSNR↑ SSIM↑ LPIPS↓ ID-SIM↑ NMKE↓ FID↓

FOMM [13] 18.20 0.635 0.236 0.869 0.061 56.10
Ours-meta (K=1) 17.27 0.598 0.241 0.869 0.041 48.11
Ours-ft (K=1) 17.37 0.605 0.232 0.886 0.041 45.69

Ours-meta (K=4) 18.90 0.638 0.192 0.909 0.039 43.19
Ours-ft (K=4) 19.33 0.661 0.171 0.930 0.037 34.31

serve that the obtained oracle segmentations are very noisy
and have poor quality. This is caused by the domain gap, in
terms of image resolution and the distribution of head poses,
between the datasets used to train the oracle segmentation
network [4], and in-the-wild videos of talking heads. There-
fore, to regularize the segmentation prediction training, we
use a mutli-task pre-training strategy where the layout pre-
diction network predicts an extra RGB reconstruction Rt of
the target image It, which is used as a secondary supervisory
signal. Figure 3 visualizes the pre-training RGB reconstruc-
tions, which emphasize their role to regularize the predicted
segmentation maps and reduce many of the errors present
in the oracle segmentations. We note that this regularization
does not affect the discreteness of the layout maps, and that
after the pre-training stage, the extra RGB channels are no
longer utilized and could be removed completely from the
architecture. However, this multi-task pre-training does en-
courage the layout latent to encode some style information.
Compared to traditional segmentation maps, our one-hot lay-
outs encode limited style information, such as shape/style of
the hair and some shading effects (e.g, Fig. 10), which leads
to an overall better performance. The 19-channel one-hot
encoding of the layouts ultimately limits style leakage and
enforces a sufficient degree of style-layout disentanglement.

A.5. More comparative results

A.5.1 Comparison with FOMM

The FOMM baseline [13] accurately reconstructs the back-
ground and other static regions due to its warping-based
nature. Therefore, it achieves lower reconstruction error
(PSNR and SSIM) than our approach in the single-shot set-
ting, even if their output contains clear artifacts in the face
area. However, one limitation to FOMM is that it cannot
utilize more input frames to its advantage. On the other hand,
Table 1 shows that our approach benefits from as few as four
input frames to outperform FOMM, even in the meta-learned
mode. Subject fine-tuning further improves our performance
to outperform FOMM by a wide margin in all metrics.

A.5.2 More comparative evaluation

We report the quantitative details for the effect of increasing
the number of K-shot inputs, as well as the effect of subject
fine-tuning in Table 2. We observe similar conclusions to
those obtained from Figure 6 in the main paper. LPD [14]
performs very poorly in the meta-learned setting, and only
outperforms the FSTH baseline [3] in the subject fine-tuning
setting. On the other hand, our method consistently outper-
forms the baselines in all metrics across different settings.
Furthermore, the performance of our method at K = 4 is on-
par with or outperforms the baselines evaluated at K = 32
across all metrics. Since the LPD [14] baseline does not
predict the background and re-crops the input/output frames,
we subtract the background and compare with their corre-
sponding cropped ground truths for quantitative analysis.
We also exclude LPD from frame reconstruction evaluation
since its outputs do not align with the rest of the methods.
Also, the authors of FSTH [3] only provide their output for
K = {1, 8, 32} and they did not release their code. There-
fore, we don’t report their performance for K = 4.



Table 2: Detailed quantitative comparison with the few-shot baselines, showing the effect of both increasing the K-shot inputs and
subject-specific fine-tuning.

K Method No Subject Fine-tuning Subject Fine-tuned

PSNR↑ SSIM↑ LPIPS↓ ID-SIM↑ NMKE↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ ID-SIM↑ NMKE↓ FID↓

1
FSTH 16.80 0.570 0.259 0.801 0.048 51.12 16.92 0.597 0.263 0.836 0.049 53.07
LPD – – – 0.732 0.072 80.20 – – – 0.837 0.070 48.48
Ours 17.27 0.598 0.241 0.869 0.041 48.11 17.37 0.605 0.232 0.886 0.041 45.69

4
FSTH – – – – – – – – – – – –
LPD – – – 0.755 0.069 79.67 – – – 0.909 0.058 38.81
Ours 18.90 0.638 0.192 0.909 0.039 43.19 19.33 0.661 0.171 0.930 0.037 34.31

8
FSTH 17.86 0.600 0.225 0.836 0.046 46.38 18.35 0.647 0.218 0.899 0.044 45.15
LPD – – – 0.760 0.068 77.00 – – – 0.922 0.056 35.87
Ours 19.18 0.645 0.186 0.917 0.039 44.23 19.65 0.675 0.160 0.940 0.036 32.54

32
FSTH 18.66 0.613 0.207 0.843 0.044 44.85 19.69 0.686 0.171 0.927 0.041 33.69
LPD – – – 0.769 0.066 63.47 – – – 0.935 0.054 33.96
Ours 19.35 0.650 0.182 0.921 0.037 43.32 19.98 0.690 0.146 0.948 0.038 28.26

A.5.3 More qualitative comparisons

Here, we expand our qualitative comparisons of the main
paper in both the multi-shot and single-shot settings. Fig-
ure 4 extends Figure 5 of the main paper. It shows more
examples comparing the effect of increasing the K-shot in-
puts and applying subject fine-tuning between our method
and the baselines. Figure 5 shows more comparisons in the
single-shot setting as Figure 4 in the main paper.

A.6. More qualitative results

We show more qualitative results of our method showing
the effect of increasing the K-shot inputs, and the effect of
applying the subject fine-tuning in Figure 6. We observe
that we get a noticeable improvement when we increase K
from 1 to 4. The visual gain from increasing K further starts
to saturate, although quantitative metrics generally keep
improving (e.g., Table 2). While increasing K beyond 4 still
leads to better visual results in general, we observe that the
most improvement focuses on the background and clothes
reconstruction, with slight improvements to sharpness and
color matching as well. Subject fine-tuning further improves
the sharpness and better reconstructs the background details.

A.7. More reenactment results

We first expand Figure 7 of the main paper by showing
the same reenactment results but for the single-shot meta-
learned setting and the 4-shot inputs in both the meta-learned
and subject fine-tuned settings in Figure 9. The results show
that even in the single-shot meta-learned setting, our model
does a pretty good job extrapolating the input image (source)
to challenging poses and expressions, while preserving the
source identity. Increasing the input shots to 4 leads to a
noticeable visual improvement, and fine-tuning further leads
to slight improvements, most notable in the female source
(middle example). These results show that our method does

not require many frames to produce realistic and identity
preserving results. For video comparison with the baselines,
please refer to the supplementary video.

We also extend Figure 7 of the main paper by showing
more reenactment results in Figure 10. We also show the
predicted spatial layouts corresponding to the outputs. The
predicted spatial layouts may be less interpretable than tra-
ditional semantic segmentations, but they seem to encode
more information and capture accurate details about the face
shape.

Additionally, we perform out-of-domain reenactment us-
ing source subjects not present in the VoxCeleb2 dataset.
Some qualitative results are shown in Figure 7. Our ap-
proach can synthesize realistic novel views given only a
single-shot input, although in some cases it shows a bit of an
identity gap.

A.8. Limitations and failure cases

Here we discuss some of the limitations of our approach.

Temporal consistency. Similar to previous direct synthe-
sis approaches [3, 14, 15], our training does not enforce
temporal consistency. Therefore the output videos often con-
tain some flickering. Considering the temporal aspect during
training (e.g., similar to [16]) could mitigate this problem,
but on the expense of higher training cost.

Failure modes for cross-subject reenactment. We ob-
serve that most of the failure cases in cross-subject reenact-
ment are caused by either source subjects with complex back-
grounds, or using male drivers to animate female sources
(e.g., Figure 8). Since complex backgrounds could lead to
artifacts in our results, then this signifies that the background
information is entangled with the face and identity informa-
tion. Learning a better disentangled representation could
improve this problem. On the other hand, the trouble faced
with male-to-female reenactment implies that our approach
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Figure 5: Extending Figure 4 of the main paper, showing more qualitative comparisons in the single-shot setting. We show three sets of
examples representing low, medium and high variance between the source and target poses. Our method is more robust to pose variations
than the baselines.
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Figure 6: Qualitative results of our method showing the gains of increasing the number of K-shot inputs and applying subject fine-tuning.



Source

Figure 7: Qualitative results on subjects not belonging to Vox-
Celeb2.

still has some sensitivity to the driver landmarks. While our
approach reduces this sensitivity significantly compared to
previous baselines, there is still room for improvement.

Background reconstruction Direct synthesis approaches,
including our method, synthesize the target frame from a
compressed latent code. This compressed bottleneck leads to
the loss of some information, especially for the background
details. Figure 8 shows some examples in the single-shot
setting. Our method cannot transfer static parts (e.g., the
closed captions or the background) from the source image to
the synthesized view. Borrowing elements from the warping-
based approaches is one direction to better reconstruct static
details.

Dataset-induced limitations. The VoxCeleb2 dataset [1]
has low resolution videos and is processed to perform
zoomed-in center crops that often cut off the top of the head.
Dataset biases are inevitably inherited by the trained mod-
els. Therefore, generating output for out-of-domain inputs
requires pre-processing the inputs to have similar properties
to the VoxCeleb2 dataset.

A.9. Ethical concerns

While the task of synthesizing realistic talking heads has
a wide range of applications, it also raises ethical concerns
regarding potential misuses of this technology. A prime
example of this is the growing misuse of DeepFakes [17, 18].
Several state-of-the-art methods can easily swap identities,
expressions as well as face attributes and generate photo-
realistic samples. Additionally, with the increase in the
ease of access to face reenactment models, more and more
people can misuse such models through widely available
applications. Thus it is important at the same time to have
the ability to detect fake content. In this direction recent
works like [19, 20, 21] have tried to solve the problem of
detecting real vs. fake images. Especially interesting is the
work by Wang et al. [20] which shows that models for fake

Figure 8: Example limitations. Top: male-to-female reenactment
sometimes causes low identity preservation and other visible ar-
tifacts. Bottom: our approach cannot faithfully reconstruct the
background details.

image detection can be made to generalize well to unseen
scenarios. While this is a temporary respite, it is important
to continue research in the field of fake image detection to
keep on par with the ever improving field of image synthesis,
as not only do models improve, but also the ease of access
to such models grows rapidly.
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Figure 9: Expanding Figure 7 of the main paper by showing the same reenactment results in the single and 4-shot settings. Our model
extrapolates well to challenging poses and expressions even with a single-shot input (shown in source), while preserving the source identity.
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Figure 10: More cross-subject reenactment results with different driving identities. Results are shown for our meta-learned model without
any fine-tuning, and using 32-shot inputs. We also show the corresponding latent spatial layout maps.


