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In this supplementary material, we provide additional
implementation details, experimental results, analyses of the
proposed method, and extensive qualitative results in many
challenging cases.

1. Additional implementation details
For the backbone networks, we employ VGG [16] and

ResNet [4] families pre-trained on ImageNet [2], e.g.,
VGG16, ResNet50, and ResNet101. For the VGG16 back-
bone, we extract features after every conv layer in the last
two building blocks: from conv4_x to conv5_x, and af-
ter the last maxpooling layer. For the ResNet backbones, we
extract features at the end of each bottleneck before ReLU
activation: from conv3_x to conv5_x. This feature ex-
tracting scheme results in 3 pyramidal layers (P = 3) for
every backbone. We set spatial sizes of both support and
query images to 400× 400, i.e., H,W = 400, thus having
H1,W1 = 50, H2,W2 = 25, and H3,W3 = 13 for both
ResNet50 and ResNet101 bakcbones and H1,W1 = 50,
H2,W2 = 25, and H3,W3 = 12 for the VGG16 backbone.
The network is implemented in PyTorch [11] and optimized
using Adam [5] with learning rate of 1e-3. We train our
model with batch size of 20, 40, and 20 for PASCAL-5i,
COCO-20i, and FSS-1000 respectively. We freeze the pre-
trained backbone networks to prevent them from learning
class-specific representations of the training data. The in-
termediate tensor dimensions, the number of parameters of
each layers and other additional details of the network are
demonstrated in Tab. S5, S6, and S7 for respective backbones
of VGG16, ResNet50, and ResNet101.

2. Additional results and analyses
Additional K-shot results. Following the work of [1, 17,
20], we conduct K-shot experiments with K ∈ {1, 5, 10}.
Table S1 compares our results with the recent methods [1,
17, 20] on PASCAL-5i and COCO-20i. The significant per-
formance improvements on both datasets clearly indicate the
effectiveness of our approach. Achieving 2.5%p and 4.6%p
mIoU improvements over the previous best method [1] on

Method PASCAL-5i COCO-20i

1-shot 5-shot 10-shot 1-shot 5-shot 10-shot

RPMM [20] 56.3 57.3 57.6 30.6 35.5 33.1
PFENet [17] 60.8 61.9 62.1 35.8 39.0 39.7
RePRI [1] 59.7 66.6 68.1 34.1 41.6 44.1
HSNet (ours) 64.0 69.5 70.6 39.2 46.9 48.7

Table S1: Results on K-shot with ResNet50 backbone network
where K ∈ {1, 5, 10}. The results of other methods are from [1].

Methods 1-shot 5-shot
50 51 52 53 mean 50 51 52 53 mean

Cshallow
p 57.1 64.7 57.5 57.0 59.1 63.7 69.8 66.0 63.4 65.7

Cdeep
p 60.6 68.6 58.2 59.2 61.7 66.7 72.0 65.9 65.4 67.5

Cp (ours) 67.3 72.3 62.0 63.1 66.2 71.8 74.4 67.0 68.3 70.4

Table S2: Numerical results of Figure 6 of our main paper. All
experiments are performed with ResNet101 backbone [4].

Methods 1-shot 5-shot
50 51 52 53 mean 50 51 52 53 mean

C(3) 54.3 62.8 52.0 52.8 55.5 60.2 67.0 59.4 59.9 61.6
C(2:3) 64.3 70.3 60.5 60.4 63.9 69.7 73.2 65.2 64.9 68.2
C (ours) 67.3 72.3 62.0 63.1 66.2 71.8 74.4 67.0 68.3 70.4

Table S3: Numerical results of Figure 7 of our main paper. All
experiments are performed with ResNet101 backbone [4].

respective PASCAL-5i and COCO-20i, our model again sets
a new state of the art in 10-shot setting as well, showing
notable improvements with larger K.

Numerical comparisons of ablation study. We tabularize
Figures 6 and 7 in our main paper, e.g., ablation study on
hypercorrelations and pyramidal layers, in Tables S2 and S3
respectively. Achieving 4.5%p mIoU improvements over
Cdeep

p , our method clearly benefits from diverse feature corre-
lations from multi-level CNN layers (Cp) as seen in Tab. S2.
A large performance gap between C(2:3) and C(3) in Tab. S3
(63.9 vs. 55.5) reveals that the intermediary second pyra-
midal layer (p = 2) is especially effective in robust mask
prediction compared to the first pyramidal layer (p = 1).

Evaluation results without using ignore_label on
PASCAL-5i. The benchmarks of PASCAL-5i [14], COCO-
20i [7], and FSS-1000 [6] consist of segmentation mask
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Backbone
network Methods 1-shot 5-shot # learnable

50 51 52 53 mIoU FB-IoU 50 51 52 53 mIoU FB-IoU params

VGG16 [16]
SG-One [24] 40.2 58.4 48.4 38.4 46.3 63.1 41.9 58.6 48.6 39.4 47.1 65.9 19.0M
CRNet [8] - - - - 55.2 66.4 - - - - 58.5 71.0 -
HSNet (ours) 53.6 61.7 55.0 50.3 55.2 70.5 58.3 64.7 58.9 54.6 59.1 73.5 2.6M

ResNet50 [4]

CANet [23] 52.5 65.9 51.3 51.9 55.4 66.2 55.5 67.8 51.9 53.2 57.1 69.6 19.0M
RPMM [20] 55.2 66.9 52.6 50.7 56.3 - 56.3 67.3 54.5 51.0 57.3 - 19.7M
CRNet [8] - - - - 55.7 66.8 - - - - 58.8 71.5 -
HSNet (ours) 57.4 66.8 55.8 56.5 59.1 73.8 62.6 69.2 62.5 62.4 64.2 77.4 2.6M

ResNet101 [4] HSNet (ours) 60.1 67.8 57.3 59.0 61.1 74.4 63.9 69.9 62.0 63.6 64.8 77.1 2.6M

Table S4: Evaluation results on PASCAL-5i [14] benchmark in mIoU and FB-IoU evaluation metrics without the use of ignore_label.
The results of other methods are from [8, 9, 17, 18, 20].

annotations in which each pixel is labeled with either back-
ground or one of the predefined object categories. As pixel-
wise segmentation near object boundaries is ambiguous to
perform even for human annotators, PASCAL-5i uses a spe-
cial kind of label called ignore_labelwhich marks pixel
regions ignored during training and evaluation to mitigate
the ambiguity*.

Most recent few-shot segmentation work [1, 9, 10, 12,
14, 15, 17, 18, 19, 22] adopt this evaluation criteria but
we found that some methods [8, 20, 23, 24] do not utilize
ignore_label in their evaluations. Therefore, the meth-
ods are unfairly evaluated as fine-grained mask prediction
near object boundaries is one of the most challenging part
in segmentation problem. For fair comparisons, we inten-
tionally exclude the methods of [8, 20, 23, 24] from Tab. 1
of our main paper and compare the results of our model
evaluated without the use of ignore_label with those
methods [8, 20, 23, 24]. The results are summarized in
Tab. S4. Even without using ignore_label, the pro-
posed method sets a new state of the art with ResNet50
backbone, outperforming the previous best methods of [20]
and [8] by (1-shot) 2.8%p and (5-shot) 5.4%p respectively.
With VGG16 backbone, our method performs comparably
effective to the previous best method [8] while having the
smallest learnable parameters.

3. Full derivation of center-pivot 4D conv

In this section, we extend Sec. 4.4 of our main paper to
provide a complete derivation of the center-pivot 4D con-
volution. Note that a typical 4D convolution parameter-
ized by a kernel k ∈ Rk̂×k̂×k̂×k̂ on a correlation tensor

*The use of ignore_label was originally adopted in PASCAL
VOC dataset [3]. The same evaluation criteria is naturally transferred to
PASCAL-5i [14] as it is created from PASCAL VOC.

c ∈ RH×W×H×W at position (x,x′) ∈ R4 is formulated as

(c ∗ k)(x,x′) =
∑

(p,p′)∈P(x,x′)

c(p,p′)k(p− x,p′ − x′),

(1)

where P(x,x′) denotes a set of neighbourhood regions
within the local 4D window centered on position (x,x′),
i.e., P(x,x′) = P(x) × P(x′) as visualized in Fig. S1.
Now we design a light-weight, efficient 4D convolution via a
reasonable weight-sparsification; from a set of neighborhood
positions within a local 4D window of interest, our kernel
aims to disregard a large number of activations located at
fairly insignificant positions in the 4D window, thereby fo-
cusing only on a small subset of relevant activations for
capturing complex patterns in the correlation tensor. Specifi-
cally, we consider activations at positions that pivots either
one of 2-dimensional centers, e.g., x or x′, as the foremost
influential ones. Given 4D position (x,x′), we collect its
neighbors if and only if they are adjacent to either x or x′

in its corresponding 2D subspace and define two respective
sets as

Pc(x,x
′) = {(p,p′) ∈ P(x,x′) : p = x}, (2)

and

Pc′(x,x
′) = {(p,p′) ∈ P(x,x′) : p′ = x′}. (3)

The set of center-pivot neighbours PCP(x,x
′) is defined as a

union of the two subsets:

PCP(x,x
′) = Pc(x,x

′) ∪ Pc′(x,x
′). (4)

Based on this small subset of neighbors, center-pivot 4D
(CP 4D) convolution can be formulated as a union of two
separate 4D convolutions:

(c ∗ kCP)(x,x
′) = (c ∗ kc)(x,x′) + (c ∗ kc′)(x,x′), (5)



𝒫 𝐱, 𝐱′ = 𝒫 𝐱 × 𝒫 𝐱′ 𝒫CP 𝐱, 𝐱′ = {(𝐩, 𝐩′) ∈ 𝒫 𝐱, 𝐱′ : 𝐩 = 𝐱 ∨ 𝐩′ = 𝐱′}𝒫 𝐱′𝒫 𝐱′

𝐱′𝐱

4-dimensional
feature space

4D convolution convolved at position (𝐱, 𝐱′) 4D convolutional kernel Center-pivot 4D convolutional kernel

weight-
sparsification

Figure S1: 4D convolution (left) and weights of 4D kernel [13, 21] (middle) and center-pivot 4D kernel (right). Each black wire that
connects two different pixel locations represent a single weight of the 4D kernel. The kernel size in this example is (3, 3, 3, 3), i.e., k̂ = 3.

where kc and kc′ are 4D kernels with their respective neigh-
bours Pc(x,x

′) and Pc′(x,x
′). Now consider below

(c ∗ kc)(x,x′) =
∑

(p,p′)∈Pc(x,x′)

c(p,p′)k(p− x,p′ − x′)

=
∑

p′∈P(x′)

c(x,p′)k(x− x,p′ − x′)

=
∑

p′∈P(x′)

c(x,p′)k(0,p′ − x′)

=
∑

p′∈P(x′)

c(x,p′)k2D
c (p′ − x′), (6)

which is equivalent to a convolution with a 2D kernel k2Dc =

k(0, :) ∈ Rk̂×k̂ performed on 2D slice of the 4D tensor
c(x, :). Similarly,

(c ∗ kc′)(x,x′) =
∑

(p,p′)∈Pc′ (x,x
′)

c(p,p′)k(p− x,p′ − x′)

=
∑

p∈P(x)

c(p,x′)k(p− x,x′ − x′)

=
∑

p∈P(x)

c(p,x′)k(p− x,0)

=
∑

p∈P(x)

c(p,x′)k2D
c′ (p− x), (7)

where k2Dc′ = k(:,0) ∈ Rk̂×k̂. Based on above derivations,
we rewrite Eqn. 5 as follows

(c ∗ kCP)(x,x
′) =

∑
p′∈P(x′)

c(x,p′)k2D
c (p′ − x′)

+
∑

p∈P(x)

c(p,x′)k2D
c′ (p− x), (8)

which performs two different convolutions on separate 2D
subspaces, having a linear complexity.

4. Qualitative results
We present additional qualitative results on PASCAL-

5i [14], COCO-20i [10], and FSS-1000 [6] benchmark
datasets. All the qualitative results are best viewed in elec-
tronic forms. Example results in presence of large scale-
differences, truncations, and occlusions are shown in Fig. S2,
S3, and S4. Figure S5 visualizes model predictions un-
der large illumination-changes in support and query images.
Figure S6 visualizes some sample predictions given excep-
tionally small objects in either support or query images. As
seen in Fig. S7, we found that our model sometimes predicts
more reliable segmentation masks than ground-truth ones.
Some qualitative results in presence of large intra-class vari-
ations and noisy clutters in background are shown in Fig. S8
and S9. Given only a single support image-annotation pair,
our model effectively segments multiple instances in a query
image as visualized in Fig. S10. Figure S11 shows represen-
tative failure cases; our model fails to localize target objects
in presence of severe occlusions, intra-class variances and ex-
tremely tiny support (or query) objects. As seen in Fig. S12,
the model predictions become much reliable given multiple
support image-mask pairs, i.e., K > 1. Figure S13 shows
some example results on FSS-1000 dataset.

Results without support feature masking. As demon-
strated in Sec. 5.1 of our main paper, we conduct experi-
ments without support feature masking (Eqn. 1 of our main
paper), similarly to co-segmentation problem with stronger
demands for generalizibility. Figure S14 visualizes some ex-
ample results on PASCAL-5i dataset. Even without the use
of support masks (in both training and testing), our model
effectively segments target instances in query images. The
results indicate that learning patterns of feature correlations
from multiple visual aspects is effective in fine-grained seg-
mentation as well as identifying ‘common’ instances in the
support and query images.



Layer Input Output Operation # params.

VGG16 Backbone

Iq (3, 400, 400) {Fq
l }7l=1

(512, 12, 12) × 1

SERIES OF 2D CONVS
14.7M

(frozen)

(512, 25, 25) × 3
(512, 50, 50) × 3

Is (3, 400, 400) {Fs
l}7l=1

(512, 12, 12) × 1
(512, 25, 25) × 3
(512, 50, 50) × 3

Masking Layer {Fs
l}7l=1

(512, 12, 12) × 1

{F̂s
l}7l=1

(512, 12, 12) × 1
(512, 25, 25) × 3
(512, 50, 50) × 3

BILINEAR INTERPOLATION
HADAMARD PRODUCT -(512, 25, 25) × 3

(512, 50, 50) × 3
Ms (1, 400, 400)

Correlation Layer

{Fq
l }7l=1

(512, 12, 12) × 1

{Cp}3p=1

(1, 12, 12, 12, 12)
(3, 25, 25, 25, 25)
(3, 50, 50, 50, 50)

COSINE SIMILARITY -

(512, 25, 25) × 3
(512, 50, 50) × 3

{F̂s
l}7l=1

(512, 12, 12) × 1
(512, 25, 25) × 3
(512, 50, 50) × 3

Squeezing Block f sqz
3 C3 (1, 12, 12, 12, 12) Csqz

3 (128, 12, 12, 2, 2)

 CP 4D CONV
GROUP NORM

RELU

× 3 167K

Squeezing Block f sqz
2 C2 (3, 25, 25, 25, 25) Csqz

2 (128, 25, 25, 2, 2)

 CP 4D CONV
GROUP NORM

RELU

× 3 169K

Squeezing Block f sqz
1 C1 (3, 50, 50, 50, 50) Csqz

1 (128, 50, 50, 2, 2)

 CP 4D CONV
GROUP NORM

RELU

× 3 202K

Mixing Block fmix
2 Cmix

2 (128, 25, 25, 2, 2)

BILINEAR INTERPOLATION
ELEMENT-WISE ADDITION CP 4D CONV

GROUP NORM
RELU

× 3
886K

Csqz
3 (128, 12, 12, 2, 2)

Csqz
2 (128, 25, 25, 2, 2)

Mixing Block fmix
1 Cmix

1 (128, 50, 50, 2, 2)

BILINEAR INTERPOLATION
ELEMENT-WISE ADDITION CP 4D CONV

GROUP NORM
RELU

× 3
886K

Cmix
2 (128, 25, 25, 2, 2)

Csqz
1 (128, 50, 50, 2, 2)

Pooling Layer Cmix
1 (128, 50, 50, 2, 2) Z (128, 50, 50) AVERAGE-POOLING -

Decoder Layer Z (128, 50, 50) M̂q (2, 400, 400) SERIES OF 2D CONVS WITH 259KBILINEAR INTERPOLATION

Table S5: Hypercorrelation Squeeze Networks (HSNet) with VGG16 [16] backbone network. The reported number of parameters in VGG16
backbone network (14.7M) excludes those in fully-connected layers (unused in our model). The total number of ‘learnable’ parameters
amounts to 2.6M. The number of intermediate features extracted from backbone network amounts to 7, i.e., L = 7. The CP 4D CONV refers
to the proposed center-pivot 4D convolution.



Layer Input Output Operation # params.

ResNet50 Backbone

Iq (3, 400, 400) {Fq
l }13l=1

(2048, 13, 13) × 3

SERIES OF 2D CONVS
23.6M

(frozen)

(1024, 25, 25) × 6
(512, 50, 50) × 4

Is (3, 400, 400) {Fs
l}13l=1

(2048, 13, 13) × 3
(1024, 25, 25) × 6
(512, 50, 50) × 4

Masking Layer {Fs
l}13l=1

(2048, 13, 13) × 3

{F̂s
l}13l=1

(2048, 13, 13) × 3
(1024, 25, 25) × 6
(512, 50, 50) × 4

BILINEAR INTERPOLATION
HADAMARD PRODUCT -(1024, 25, 25) × 6

(512, 50, 50) × 4
Ms (1, 400, 400)

Correlation Layer

{Fq
l }13l=1

(2048, 13, 13) × 3

{Cp}3p=1

(3, 13, 13, 13, 13)
(6, 25, 25, 25, 25)
(4, 50, 50, 50, 50)

COSINE SIMILARITY -

(1024, 25, 25) × 6
(512, 50, 50) × 4

{F̂s
l}13l=1

(2048, 13, 13) × 3
(1024, 25, 25) × 6
(512, 50, 50) × 4

Squeezing Block f sqz
3 C3 (3, 13, 13, 13, 13) Csqz

3 (128, 13, 13, 2, 2)

 CP 4D CONV
GROUP NORM

RELU

× 3 168K

Squeezing Block f sqz
2 C2 (6, 25, 25, 25, 25) Csqz

2 (128, 25, 25, 2, 2)

 CP 4D CONV
GROUP NORM

RELU

× 3 172K

Squeezing Block f sqz
1 C1 (4, 50, 50, 50, 50) Csqz

1 (128, 50, 50, 2, 2)

 CP 4D CONV
GROUP NORM

RELU

× 3 203K

Mixing Block fmix
2 Cmix

2 (128, 25, 25, 2, 2)

BILINEAR INTERPOLATION
ELEMENT-WISE ADDITION CP 4D CONV

GROUP NORM
RELU

× 3
886K

Csqz
3 (128, 13, 13, 2, 2)

Csqz
2 (128, 25, 25, 2, 2)

Mixing Block fmix
1 Cmix

1 (128, 50, 50, 2, 2)

BILINEAR INTERPOLATION
ELEMENT-WISE ADDITION CP 4D CONV

GROUP NORM
RELU

× 3
886K

Cmix
2 (128, 25, 25, 2, 2)

Csqz
1 (128, 50, 50, 2, 2)

Pooling Layer Cmix
1 (128, 50, 50, 2, 2) Z (128, 50, 50) AVERAGE-POOLING -

Decoder Layer Z (128, 50, 50) M̂q (2, 400, 400) SERIES OF 2D CONVS WITH 259KBILINEAR INTERPOLATION

Table S6: Hypercorrelation Squeeze Networks (HSNet) with ResNet50 [4] backbone network. The reported number of parameters in
ResNet50 backbone network (23.6M) excludes those in fully-connected layers (unused in our model). The total number of ‘learnable’
parameters amounts to 2.6M. The number of intermediate features extracted from backbone network amounts to 13, i.e., L = 13.



Layer Input Output Operation # params.

ResNet101 Backbone

Iq (3, 400, 400) {Fq
l }30l=1

(2048, 13, 13) × 3

SERIES OF 2D CONVS
42.6M

(frozen)

(1024, 25, 25) × 23
(512, 50, 50) × 4

Is (3, 400, 400) {Fs
l}30l=1

(2048, 13, 13) × 3
(1024, 25, 25) × 23
(512, 50, 50) × 4

Masking Layer {Fs
l}30l=1

(2048, 13, 13) × 3

{F̂s
l}30l=1

(2048, 13, 13) × 3
(1024, 25, 25) × 23
(512, 50, 50) × 4

BILINEAR INTERPOLATION
HADAMARD PRODUCT -(1024, 25, 25) × 23

(512, 50, 50) × 4
Ms (1, 400, 400)

Correlation Layer

{Fq
l }30l=1

(2048, 13, 13) × 3

{Cp}3p=1

(3, 13, 13, 13, 13)
(23, 25, 25, 25, 25)
(4, 50, 50, 50, 50)

COSINE SIMILARITY -

(1024, 25, 25) × 23
(512, 50, 50) × 4

{F̂s
l}30l=1

(2048, 13, 13) × 3
(1024, 25, 25) × 23
(512, 50, 50) × 4

Squeezing Block f sqz
3 C3 (3, 13, 13, 13, 13) Csqz

3 (128, 13, 13, 2, 2)

 CP 4D CONV
GROUP NORM

RELU

× 3 168K

Squeezing Block f sqz
2 C2 (23, 25, 25, 25, 25) Csqz

2 (128, 25, 25, 2, 2)

 CP 4D CONV
GROUP NORM

RELU

× 3 185K

Squeezing Block f sqz
1 C1 (4, 50, 50, 50, 50) Csqz

1 (128, 50, 50, 2, 2)

 CP 4D CONV
GROUP NORM

RELU

× 3 203K

Mixing Block fmix
2 Cmix

2 (128, 25, 25, 2, 2)

BILINEAR INTERPOLATION
ELEMENT-WISE ADDITION CP 4D CONV

GROUP NORM
RELU

× 3
886K

Csqz
3 (128, 13, 13, 2, 2)

Csqz
2 (128, 25, 25, 2, 2)

Mixing Block fmix
1 Cmix

1 (128, 50, 50, 2, 2)

BILINEAR INTERPOLATION
ELEMENT-WISE ADDITION CP 4D CONV

GROUP NORM
RELU

× 3
886K

Cmix
2 (128, 25, 25, 2, 2)

Csqz
1 (128, 50, 50, 2, 2)

Pooling Layer Cmix
1 (128, 50, 50, 2, 2) Z (128, 50, 50) AVERAGE-POOLING -

Decoder Layer Z (128, 50, 50) M̂q (2, 400, 400) SERIES OF 2D CONVS WITH 259KBILINEAR INTERPOLATION

Table S7: Hypercorrelation Squeeze Networks (HSNet) with ResNet101 [4] backbone network. The reported number of parameters in
ResNet101 backbone network (42.6M) excludes those in fully-connected layers (unused in our model). The total number of ‘learnable’
parameters amounts to 2.6M. The number of intermediate features extracted from backbone network amounts to 30, i.e., L = 30.



Support set Query image Prediction Ground-truth

Figure S2: Qualitative (1-shot) results on PASCAL-5i [14] dataset
under large differences in object scales.

Support set Query image Prediction Ground-truth

Figure S3: Qualitative (1-shot) results on PASCAL-5i [14] and
COCO-20i [7] datasets under large truncations and occlusions.



Support set Query image Prediction Ground-truth

Figure S4: Qualitative (1-shot) results on COCO-20i [7] dataset
under large differences in object scales.

Support set Query image Prediction Ground-truth

Figure S5: Qualitative (1-shot) results on COCO-20i [7] dataset
under large illumination-changes in support and query images.

Support set Query image Prediction Ground-truth

Figure S6: Qualitative (1-shot) results on COCO-20i [7] dataset
with exceptionally small objects.

Support set Query image Prediction Ground-truth

Figure S7: Our network occasionally predicts more accurate seg-
mentation masks than human-annotated ground-truths.



Support set Query image Prediction Ground-truth

Figure S8: Qualitative (1-shot) results on PASCAL-5i [14] and
COCO-20i [7] datasets under large intra-class variations.

Support set Query image Prediction Ground-truth

Figure S9: Qualitative (1-shot) results on PASCAL-5i [14] and
COCO-20i [7] datasets in presence of noisy background clutters.



Support set Query image Prediction Ground-truth

Figure S10: One-to-many and many-to-many (1-shot) results on
PASCAL-5i [14], COCO-20i [7], and FSS-1000 [6] datasets.

Support set Query image Prediction Ground-truth

Figure S11: Representative failure cases in presence of severe
occlusions, intra-class variances and extremely tiny objects.



Query image Ground-truthSupport set Prediction Support set Prediction

1-shot 5-shot

Figure S12: Comparison between 1-shot and 5-shot results on PASCAL-5i dataset [14]. Multiple support images and mask annotations
clearly help our model generate accurate mask predictions on query images in many challenging cases.



Support set Query image Prediction Ground-truth

Figure S13: Example (1-shot) results on FSS-1000 [6] dataset con-
sisting of diverse artificial/manmade and natural/organic objects.

Support image Query image Prediction Ground-truth

Figure S14: Example results without support feature masking
(Eqn. 1 of our main paper) on PASCAL-5i dataset.
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