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A. Similarity as edge prediction
To accommodate training with the graph encoder (GE),

we formulate learning similarity as an edge prediction task
on graph with nodes as images as done in [3]. Each node
in the graph represents an image and the edges represent
ground truth similarity information. Edges are stored as an
adjacency matrix A ∈ RN×N where Ai,j = 1 if there
exists an edge between node i and node j, i.e., if the images
corresponding to the nodes are labelled to be similar in the
dataset. Ai,j = 0 otherwise. Note that this is a general
formulation and encoders other than the GE can be trained
this way. The graph defined just does not play any role in
the model’s outputs in that case.

B. Similarity prediction for end tasks
Fashion Compatibility Prediction. The goal of this task
is to predict whether a given set of items is compatible. We
compute the compatibility score of an outfit (group of items)
by averaging the likelihood of edge existence over all pairs
of items in the outfit. Area under a receiver operating char-
acteristic curve (AUC) is used here to evaluate the perfor-
mance on this task. For this task, at inference time, a model
with GE uses no ground truth context information in the
form of edges since none is available.
Fill-in-the-blank (FITB). The FITB task is to select the
best compatible item given a partial outfit and a set of can-
didate items. Concretely, a question consists of n items
q1, q2, ..., qn. Each question has m choices o1, o2..., om.
Our models compute the compatibility score s between all
item pairs and sij represents the score between qi and oj .
The score of oj is calculated as

∑n
i=0 sij . The item that ob-

tains the highest score is chosen as our final candidate. Per-
formance is measured in terms of answer accuracy. When
a GE is used, edges are added to represent compatibility
between the items in the question, i.e., edges are added be-
tween each qi and qj for i, j ∈ [n], at inference time.
Few shot classification. Each 5-way 5-shot classification
episode has 5 support examples or 5 “shots” for each of the
5 classes and 16 query examples from each class. The task

is to classify query examples into one of the 5 classes. For a
given query example, the model predicts the probability of
existence of an edge between it and the support examples
for each of the classes. The average edge probability over
support examples for a given class is treated as a score of
belongingness to that class. The model then predicts the
class of the given example as the one with the highest score.
The accuracy of the model for an episode is its accuracy in
classifying the 16 x 5 = 80 query examples.

C. Implementation details

In this section we describe the training details of our
models and different baselines referred to in Section 4.1 in
the main paper.

C.1. Pairwise Attribute-informed similarity Net-
work (PAN)

Our PAN model uses image features encoded by a pre-
trained CNN. We use a Resnet-18 [5] feature extractor for
few shot classification on CUB and a Resnet-50 for fash-
ion compatibility prediction on the Polyvore Outfits dataset.
The Resnet-50 used is pretrained on Imagenet [4]. How-
ever, we use the feature extractor from a Siamese Network
(details below in section C.2) for CUB since the novel split
of CUB shares some images with the Imagenet dataset. The
size of the image input to these feature extractors is 224 x
224, and the features output from Resnet-18 are 512 dimen-
sional while those output from Resnet-50 are 2048 dimen-
sional.

For models evaluated on CUB, the graph encoder con-
tains a 3 layer graph convolutional network (GCN) where
the features output at each layer are 350 dimensional. The
same for Polyvore Outfits is a 2-layer GCN, the features
being 200 dimensional at the output of each layer.

In the training of models using the graph encoder, we
use dropout with drop probability of 0.5 at each GCN layer.
As an additional method of regularization, in each epoch of
training, each edge in the adjacency matrix A is dropped
with a probability 0.15.



For training the PAN models, we use an Adam [6] op-
timizer with learning rate 0.001. The models for few shot
classification on CUB are trained for 1000 epochs and the
ones for fashion compatibility prediction on Polyvore Out-
fits for 4000 epochs, validation being done after each epoch
of training.

C.2. Siamese Network for few shot classification

We train a Siamese Network [1, 7] for few shot classi-
fication on CUB, primarily as a CNN feature extractor for
the PAN models. Training examples are obtained by sam-
pling triplets of images (x, y, z), where x and y belong to the
same class and z belongs to a different class. The network
is trained to minimize the following triplet loss

L = max(||f(x)− f(y)||2 − ||f(x)− f(z)||2 + α, 0)
(1)

where f is the ResNet-18 feature extractor, ||·||2 is the `2
norm, and α is a margin parameter.

We use the same splits for CUB as [2], 100 classes in
the base split and 50 each in the novel and val splits. In
one epoch of training, the network sees all possible positive
pairs of images in the training dataset (base split of CUB),
with negative examples sampled randomly from one of the
remaining classes. We trained the network for 200 epochs,
validating every 2 epochs using average accuracy on 100
few shot classification episodes drawn from the val split.
We used Adam [6] optimizer with a learning rate of 0.001
and the margin parameter α was chosen to be 0.2. A mini-
batch size of 96 triplets was used for training. We used
random resizing and cropping, color jittering and random
horizontal flips as data augmentation for training.

C.3. Single batch training

When training with a single batch (i.e., the entire dataset
is used for training at once), fine-tuning the CNN with lim-
ited GPU memory is not possible. Thus, to minimize the
GPU memory required for each image, we use a pretrained
CNN to get fixed-length feature representations for images.
For methods like a Siamese Network and “X + Attr Multi-
task” we train a classifier implemented as a fully connected
layer to predict links between images, using a single batch
consisting of pre-extracted features from the entire training
set. These features are extracted from a CNN trained using
mini-batches either as a Siamese Network or with an ad-
ditional attribute prediction head, as is done for “X + Attr
Multitask”.

D. PAN — Behavior with different number of
similarity conditions

In Figure 1 we plot the performance of the PAN-
supervised and the PAN-unsupervised models with differ-
ent numbers of similarity conditions. For supervision, we

randomly shuffled the order of attributes and selected the
first n.

In Figure 1(a), where we plot only the FITB accuracy
of the models on the resampled Polyvore Outfits split, we
see that when there are few supervised attributes, the per-
formance of the fully supervised model is poor. However,
when the similarity conditions are allowed to be free (in the
unsupervised model), the performance is higher. The super-
vised model starts performing better as the number of dif-
ferent attributes that are annotated increases. The increase
in performance of the unsupervised model with increasing
number of similarity conditions is much less pronounced,
thus showcasing the role of supervision using attribute an-
notations in fashion compatibility prediction performance
on Polyvore Outfits.

A different trend is seen in the case of few shot classi-
fication on CUB (in Figure 1(b)), where the unsupervised
model has performance close to that of the fully supervised
model. There is a general increase in performance with
more similarity conditions in both the unsupervised and the
supervised models, but the performance is high enough with
a few similarity conditions. This indicates that good perfor-
mance on the few shot classification task can be achieved
with a few unsupervised similarity conditions, and super-
vision using attributes provides a small boost most of the
time. The relatively good performance on this task may
be the result of the relative simplicity of the task, where
few-shot classification can be thought of as trying to simply
match attributes. In comparison, in fashion compatibility,
the relationship between attributes is far more complicated,
as discussed in the introduction of our paper. Images with
different attributes can be deemed highly similar (or more
compatible), while some attribute combinations may indi-
cate dissimilarity/incompatibility even if subsets of them
would normally indicate similarity. This requires a far more
complex function to reason about attributes, which our re-
sults seem to indicate is difficult to capture without super-
vision.

We also find that using supervised attributes often re-
quires a critical mass, i.e., a variety of attributes are re-
quired to outperform the unsupervised model reliably. Our
results on Polyvore Outfits demonstrate that these need not
be dense annotations. Attributes on that dataset were au-
tomatically labeled after curating a set of visual concepts
manually from common words that appear in the items’ de-
scription and/or title, resulting in a very sparsely annotated
dataset.

E. Choosing number of similarity conditions
for unsupervised models

Figures 2(a) & 2(b), show the validation set perfor-
mances of the unsupervised models in the two tasks—
predicting compatibility on Polyvore Outfits and few shot
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(a) FITB accuracy on Polyvore Outfits
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Figure 1: Comparing performance with different number of similarity conditions on the test set. For providing super-
vision with n attributes (where n may be less than the total number of attributes labelled in the dataset), the first n of a fixed
random order of attributes were chosen.
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(a) FITB accuracy on Polyvore Outfits
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(b) Few shot classification on CUB

Figure 2: Validation set performance of the PAN models with unsupervised similarity conditions

classification on CUB. We chose the models with the best
validation accuracy for comparison in Tables 1, 2 and 4
of the main paper. In particular, for both tasks, we found
that the best performance was achieved at 50 unsupervised
similarity conditions (M = 50) and beyond that the model
seems to overfit.

F. Attribute Recognition Experiments

We train the PAN models using supervision from the
logical OR of attributes, and have seen that this helps in
improving similarity prediction performance. Here, we in-
spect if the supervision results in meaningful predictions
along different supervised similarity conditions. On pairs

of images from the test split of the data, we compute the
average precision (AP) of the attribute scores output by our
model where the ground truth comes from the OR of the
attribute labels. Missing attribute labels and their score pre-
dictions are excluded. The mean AP (mAP) is then com-
puted by averaging the APs over the different attributes.

In Figure 3, we compare the mAP values as described
above for our PAN-Supervised model using different val-
ues of the hyperparameter λ. In both Figures 3(a) and 3(b),
the brown dotted horizontal line is the mean average preci-
sion of a set of scores generated uniformly at random from
the range [0, 1]. From both figures, we see that increasing
the weight of attribute supervision increases the mAP. Com-
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(a) Attribute recognition on Polyvore Outfits.
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(b) Attribute recognition on CUB

Figure 3: Mean average precision (mAP) of attribute prediction.

bining the results of Figure 3 with those of Figure 3 in the
main paper, on the Polyvore Outfits dataset we see a posi-
tive correlation between the end-task performance and the
mAP on attributes. λ = 10 results in both the best end-task
performance as well as the best mAP. This suggests that
if we were to improve our model to better recognize joint
attributes, we would improve compatibility predictions as
well. On the CUB dataset however, we see a possible trade-
off, where the attribute prediction performance is better for
a higher lambda, but end-task performance is better for a
lower value of lambda. This is in line with what we observe
in Section D, where we see a smaller role of attribute su-
pervision in improving few shot classification performance
on CUB as compared to its effect in fashion compatibility
prediction on Polyvore Outfits.

G. More questions

How useful are relevance weights to model perfor-
mance? To find out, we experimented with an approach that
predicts output similarity scores as PAN does and simply
averages them to get the final similarity prediction between
two images. On CUB, the 5-way 5-shot accuracy of this
model was 85.25± 0.28 (over 3 runs with different random
initializations) compared to 92.77±0.30 with the relevance
weighted sum. The FITB accuracy on the resampled split
of PO, for it was 63.6 compared to 69.7 with the relevance
weights. Thus simply averaging similarity predictions was
found to perform poorer, highlighting the importance of us-
ing relevance weights.
What is the reason behind using the logical functions
that were used for attribute combination fa? We defined
fa : {0, 1} × {0, 1} → [0, 1] as some function that maps
two input attribute labels to a pair-wise label for supervi-

sion. The definition lends quite some flexibility in choosing
what fa can be, where possibilities include both binary (i.e.
outputs only take on values 0 or 1), or fractional outputs (in
the entire range [0, 1]). fa can be either a non-parametric
function, or could involve parameters (e.g. it could be a lin-
ear combination or could be non-linear like a multi-layer
perceptron). To narrow down this range of choices, for our
experiments, we restrict fa to only binary values leaving the
exploration of other choices to future work. Fractional out-
puts of the attribute combination fa could have benefits in
certain scenarios, for instance, it could be used for ranking
images by some form of attribute strength as done in “rela-
tive attributes” [8].

Restricting fa to binary outputs results in a total of 16
possibilities. Out of the 16, ruling out functions that are
non-commutative, there are 8 possible choices remaining.
This set largely consists of common logical functions. We
can further narrow this down to 4 choices, which are the
ones we experimented with in Section 5 of the main paper.
Of the 8, the functions left out were the constants (always 0
or always 1) and NAND and NOR. The first two do not
provide information regarding the inputs, and the latter two
are simply negatives of AND and OR respectively.

As a form of sanity-check, we also experimented with
randomizing the attribute labels to ensure that supervision
indeed helps (even if it is sparse), rather than there being
some form of a regularizing effect from random labels. On
the resampled split of PO, the FITB accuracy of a model that
was trained with such random labels was 58.0, compared to
69.7 for a supervised model with OR attribute combination,
verifying the role of attribute supervision.

Is it possible to train a model with both supervised and
unsupervised similarity conditions? An excellent ques-



tion and certainly a possibility. However, in our experi-
ments, we found that such a model could (ab)use its ad-
ditional capacity to overfit to training data. On the CUB
dataset, a “hybrid” model with 312 each of supervised and
unsupervised similarity conditions could achieve a 5-way 5-
shot accuracy of 91.38±0.24. On the resampled split of PO,
a model with 150 each supervised and unsupervised condi-
tions had a FITB accuracy of 62.90. Note that in this ex-
periment, we had to restrict to fewer than 206 attributes be-
cause of GPU memory constraints, but even so, this model
had more (a total of 300) similarity conditions than both the
PAN-Supervised and PAN-Unsupervised models reported
in Table 1 of the main paper. We leave to future work, a
more in-depth analysis of this model and a possible way of
effectively utilizing both unsupervised and supervised sim-
ilarity conditions.

Do the attribute importance scores always reflect human
intuition? On the CUB dataset, we found some variance
across the attribute importance scores for the same exam-
ples in different training runs starting from the same ini-
tializations. Fig 4 shows the variance in average ranks of
different attributes across 3 different training runs of PAN-
supervised. Ranks are computed based on both the rele-
vance score (left) and the contribution to the similarity score
(right) with the highest score being rank 1. The average
ranks are computed by first computing for each run, the av-
erage rank of a given attribute in terms of its score from the
PAN model across all pairs of images in the novel (or test)
split of the dataset. This results in 3 average ranks (one per
run). The average of these and the standard deviation (using
error bars) are plotted in the figure.

We see that after the first three attributes sorted by rank
(Fig. 4 (top)), the variance in the average rank increases by
a lot. There are other attributes with smaller variance (Fig. 4
(bottom)) but at a much higher rank (meaning they have low
relevance or contribution). Thus, in the case of CUB, PAN
has learnt a relevance predictor, that has fairly high variance
dependent on initialization for most attributes. This behav-
ior is likely a consequence of two factors: first, attribute la-
bels were sparse and noisy and so PAN learned to treat some
similarity conditions as latent or unsupervised. For some
attributes, this variance in relevance score is also possibly
a consequence of that attribute not being useful for deter-
mining similarity. As a consequence, the model appeared
to override these less important attributes to instead learn
some general similarity metric. This would manifest itself
as that attribute having low recognition performance cou-
pled with high contribution to the overall similarity score
in some runs, but not others, resulting in high variance in
an attribute’s overall rank across initializations. Thus, we
found PAN’s attribute relevance predictions to be too noisy
to be reliably consistent with human intuition, especially for
the CUB dataset.

(a) Attributes sorted according to increasing average rank

(b) Attributes sorted according to increasing variance

Figure 4: Attributes’ mean ranks and standard deviations by
relevance score and contribution to the similarity score over
multiple training runs. See Sec. G for discussion. (Best
viewed under zoom)
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