
Supplemental Material

A. Implementation Details

A.1. Architecture

We describe the 3DETR architecture in detail.

Architecture. We follow the dataset preprocessing

from [42] and obtain N = 20, 000 points and N = 40, 000
points respectively for each sample in SUN RGB-D and

ScanNetV2 datasets. The N×3 matrix of point coordinates

is then passed through one layer of the downsampling and

set aggregation operation [45] which uses Farthest-Point-

Sampling to sample 2048 points randomly from the scene.

Each point is projected to a 256 dimensional feature fol-

lowed by the set-aggregation operation that aggregates fea-

tures within a ℓ2 distance of 0.2. The output is a 2048×256
dimensional matrix of features for the N ′ = 2048 points

which is input to the encoder. We now describe the encoder

and decoder architectures (illustrated in Fig 6).
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Figure 6: Architecture of Encoder and Decoder. We present

the architecture for one layer of the 3DETR encoder and decoder.

The encoder layer takes as input N ′
× d features for N ′ points

and outputs N
′
× d features too. It performs self-attention fol-

lowed by a MLP. The decoder takes as input B × d features (the

query embeddings or the prior decoder layer), N ′
× d point fea-

tures from the encoder to output B × d features for B boxes. The

decoder performs self-attention between the B query/box features

and cross-attention between the B query/box features and the N
′

point features. We denote by ∼F the Fourier positional encod-

ings [64] used in the decoder. All 3DETR models use d = 256.

Encoder. The encoder has three layers of self-attention fol-

lowed by an MLP. The self-attention operation uses multi-

headed attention with four heads. The self-attention pro-

duces a 2048×2048 attention matrix which is used to attend

to the features to produce a 256 dimensional output. The

MLPs in each layer have a hidden dimension with 128. All

the layers use LayerNorm [2] and the ReLU non-linearity.

3DETR-m Encoder. The masked 3DETR-m encoder has

three layers of self-attention followed by an MLP. At each

layer the self-attention matrix of size #points×#points is

multiplied with a binary mask M of the same size. The bi-

nary mask entry Mij is 1 if the point coordinates for points

i and j are within a radius r of each other. We use radius

values of [0.4, 0.8, 1.2] for the three layers. The first layer

operates on 2048 points and is followed by a downsample

+ set aggregation operator that downsamples to 1024 points

using a radius of 0.4, similar to PointNet++. The encoder

layers follow the same structure as the vanilla Encoder de-

scribed above, i.e., MLPs with hidden dimension of 128,

multi-headed attention with four heads etc. The encoder

produces 256 dimensional features for 1024 points.

Decoder. The decoder operates on the N ′ × 256 encoder

features and B × 256 location query embeddings. It pro-

duces a B × 256 matrix of box features as output. The de-

coder has eight layers and uses cross-attention between the

location query embeddings (Sec 3.2 main paper) and the

encoder features, and self-attention between the box fea-

tures. Each layer has the self-attention operation followed

by a cross-attention operation (implemented exactly as self-

attention) and an MLP with a hidden dimension of 256. All

the layers use LayerNorm [2], ReLU non-linearity and a

dropout of 0.3.

Bounding box prediction MLPs. The box prediction

MLPs operate on the B × 256 box features from the de-

coder. We use separate MLPs for the following five pre-

dictions - 1) center location offset ∆q ∈ [0, 1]3; 2) angle

quantization class; 3) angle quantization residual ∈ R; 4)

box size s ∈ [0, 1]3; 5) semantic class of the object. Each

MLP has 256 hidden dimensions and uses the ReLU non-

linearity. The center location and size prediction MLP out-

puts are followed by a sigmoid function to convert them into

a [0, 1] range.

Inference speed. 3DETR has very few 3D-specific tweaks

and uses standard PyTorch. VoteNet relies on custom GPU

CUDA kernels for 3D operations. We measured the infer-

ence time of 3DETR (256 queries) and VoteNet (256 boxes)

on a V100 GPU with a batchsize of 8 samples. Both models

downsample the pointcloud to 2048 points. 3DETR needs

170 ms while VoteNet needs 132 ms. As research into ef-

ficient self-attention becomes more mature (several recent

works show promise), it will benefit the runtime and mem-

ory efficiency of our model.



Encoder Layers Decoder Layers Inference time

3 3 153

3 6 164

3 8 170

3 10 180

6 6 193

6 8 213

8 8 219

Table 7: Inference Speed and Memory. We provide inference

speed (in milliseconds) for different number of encoder and de-

coder layers in the 3DETR model. All timings are measured on a

single V100 GPU with a batchsize of 8 and using 256 queries.

A.2. Set Loss

The set matching cost is defined as:

Cmatch(b̂,b) = −λ1GIoU(b̂,b) + λ2‖ĉ− c‖1
︸ ︷︷ ︸

geometric

−λ3ŝ[sgt]
︸ ︷︷ ︸

semantic

For B predicted boxes and G ground truth boxes, we

compute a B × G matrix of costs by using the above pair-

wise cost term. We then compute an optimal assignment

between each ground truth box and predicted box using the

Hungarian algorithm. Since the number of predicted boxes

is larger than the number of ground truth boxes, the remain-

der B−G boxes are considered to match to background. We

set λ1, λ2, λ3, λ4 as 2, 1, 0, 0 for ScanNetV2 and 3, 5, 1, 5
for SUN RGB-D.

For each predicted box that is matched to a ground truth

box, our loss function is:

L3DETR = 5 ∗ ‖ĉ− c‖1 + ‖d̂− d‖1 + ‖âr − ar‖huber

− 0.1 ∗ a⊺c log âc − 5 ∗ s⊺c log ŝc

For each unmatched box that is considered background, we

compute only the semantic loss term. The semantic loss

is implemented as a weighted cross entropy loss with the

weight of the ‘background’ class as 0.2 and a weight of 0.8
for the K object classes.

B. Experiments

We provide additional experimental details and hyperpa-

rameter settings.

B.1. Improved baselines

We improve the VoteNet and BoxNet baselines by doing

a grid search and improving the optimization hyperparam-

eters. We train the baseline models for 360 epochs using

the Adam optimizer [20] with a learning rate of 1 × 10−3

decayed by a factor of 10 after 160, 240, 320 epochs and a

Method ScanNetV2 SUN RGB-D

AP25 AP50 AP25 AP50

BoxNet [42] 45.4 - 53.0 -

BoxNet† [42] 49.0 21.1 52.4 25.1

VoteNet [42] 58.6 33.5 57.7 -

VoteNet† [42] 60.4 35.5 58.3 33.4

Table 8: Improved baseline. We denote by † our improved im-

plementation of the baseline methods and report the numbers from

the original paper [42]. Our improvements ensure that the compar-

isons in the main paper are fair.

weight decay of 0. We found that using a cosine learning

rate schedule, even longer training than 360 epochs or the

AdamW optimizer did not make a significant difference in

performance for the baselines. These improvements to the

baseline lead to an increase in performance, summarized

in Table 8.

B.2. Per­class Results

We provide the per-class mAP results for ScanNetV2

in Table 10 and SUN RGB-D in Table 9. The overall results

for these models were reported in the main paper ( Table 1).

B.3. Detailed state­of­the­art comparison

We provide a detailed comparison to state-of-the-art de-

tection methods in Table 11. Most state-of-the-art meth-

ods build upon VoteNet. H3DNet [89] uses 3D primitives

with VoteNet for better localization. HGNet [5] improves

VoteNet by using a hierarchical graph network with higher

resolution output from its PointNet++ backbone. 3D-

MPA [11] uses clustering based geometric aggregation and

graph convolutions on top of the VoteNet method. 3DETR

does not use Voting and has fewer 3D specific decisions

compared to all other methods. 3DETR performs favorably

compared to these methods and outperforms VoteNet. This

suggests that, like VoteNet, 3DETR can be used as a build-

ing block for future 3D detection methods.

B.4. 3DETR­m with Vote loss

We tuned the VoteNet loss with the 3DETR-m en-

coder and our best tuned model gave 60.7% and 56.1%

mAP on ScanNetV2 and SUN RGB-D respectively (set-

tings from Table 3 of the main paper). The VoteNet loss

performs better with 3DETR-m compared to the vanilla

3DETR encoder (gain of 6% and 3%), confirming that the

VoteNet loss is dependent on the inductive biases/design of

the encoder. Using our set loss is still better than using the

VoteNet loss for 3DETR-m ( Table 1 vs. results stated in this

paragraph). Thus, our set loss design decisions are more

broadly applicable than that of VoteNet.



Model bed table sofa chair toilet desk dresser nightstand bookshelf bathtub

3DETR 81.8 50.0 58.3 68.0 90.3 28.7 28.6 56.6 27.5 77.6

3DETR-m 84.6 52.6 65.3 72.4 91.0 34.3 29.6 61.4 28.5 69.8

Table 9: Per-class AP25 for SUN RGB-D.

Model cabinet bed chair sofa table door window bookshelf picture counter desk curtain refrigerator showercurtrain toilet sink bathtub garbagebin

3DETR 50.2 87.0 86.0 87.1 61.6 46.6 40.1 54.5 9.1 62.8 69.5 48.4 50.9 68.4 97.9 67.6 85.9 45.8

3DETR-m 49.4 83.6 90.9 89.8 67.6 52.4 39.6 56.4 15.2 55.9 79.2 58.3 57.6 67.6 97.2 70.6 92.2 53.0

Table 10: Per-class AP25 for ScanNetV2.

Method Arch. ScanNetV2 SUN RGB-D

AP25 AP50 AP25 AP50

BoxNet† [42] BoxNet 49.0 21.1 52.4 25.1

3DETR Tx. 62.7 37.5 56.8 30.1

VoteNet† [42] VoteNet 60.4 37.5 58.3 33.4

3DETR-m Tx. 65.0 47.0 59.0 32.7

H3DNet [89] VoteNet + 3D primitives 67.2 48.1 60.1 39.0

HGNet [5] VoteNet + GraphConv 61.3 34.4 61.6 34.4

3D-MPA [11] VoteNet + GraphConv 64.2 49.2 - -

Table 11: Detailed state-of-the-art comparison on 3D detec-

tion.

B.5. Adapt queries at test time

We provide additional results for Section 5.1 of the main

paper. We change the number of queries used at test time

for the same 3DETR model. We show these results in Fig 7

for two different 3DETR models trained with 64 and 256

queries respectively. We observe that the model trained with

64 queries is more robust to changing queries at test-time,

but at its most optimal setting achieves worse detection per-

formance than the model trained with 256 queries. In the

main paper, we show results of changing queries at test

time for a model trained with 128 queries that achieves a

good balance between overall performance and robustness

to change at test-time.

B.6. Visualizing the encoder attention

We visualize the encoder attention for a 3DETR model

trained on the SUN RGB-D dataset in Fig 8. The encoder

focuses on parts of objects.

B.7. Shape Classification setup

Dataset and Metrics. We use the processed point clouds

with normals from [45], and sample 8192 points as input

for both training and testing our models. Following prior

work [90], we report two metrics to evaluate shape classi-

fication performance: 1) Overall Accuracy (OA) evaluates

how many point clouds we classify correctly; and 2) Class-

Mean Accuracy (mAcc) evaluates the accuracy for each

class independently, followed by an average over the per-

class accuracy. This metric ensures tail classes contribute

equally to the final performance.
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Figure 7: Adapt queries at test time. Similar to Figure 5 of

the main paper, we change the number of queries at test time for

a 3DETR model and compare it to different models trained with

a varying number of queries. We plot the results for the same

3DETR model trained with 64 queries (left) or with 256 queries

(right).

Input Point Cloud Encoder Attention

Figure 8: Encoder attention. We visualize the encoder attention

for two different heads. We compute the self-attention from the

reference point (blue dot) to all the points in the scene and display

the points with the highest attention values in red. The encoder

groups together different geometric parts (legs of multiple chairs)

or focuses on single parts of an instance (backrest of a chair).

Architecture Details. We use the base 3DETR and

3DETR-m encoder architectures, followed by a 2-layer

MLP with batch norm and a 0.5 dropout to transform the fi-

nal features into a distribution over the 40 predefined shape

classes. Differently from object detection experiments, our

point features include the 3D position information concate-

nated with 3D normal information at each point, and hence

the first linear layer is correspondingly larger, though the

rest of the network follows the same architecture as the en-

coder used for detection. For the experiments with 3DETR,

we prepend a [CLS] token, output of which is used as input

to the classification MLP. For the experiments with 3DETR-

m that involve masked transformers, we simply max pool



the final layer features, which are then passed into the clas-

sifier.

Training Details. All models are trained for 250 epochs

with a learning rate (LR) of 4×10−4 and a weight decay of

0.1, using the AdamW optimizer. We use a linear warmup

of LR from 4 × 10−7 to the initial LR over 20 epochs, and

then decay to 4×10−5 over the remaining 230 epochs. The

models are trained on 4 GPUs with a batch size of 2 per

GPU.


