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A. Overview
This document provides more visualizations, results and

more detailed descriptions accompanying the main paper. In
summary, we include

• More details about the simulation framework and set-
tings;

• More details about collecting interaction trials;

• Training details and computational timing;

• Visualization of the 15 object categories from
SAPIEN [5] that we use in our work;

• More results on real-world data;

• More visualization of the actionability scoring predic-
tions;

• More visualization of the action proposal predictions;

• Failure cases discussions and visualizations.

We also include a video clip (on the website) that present
interactive demonstrations for the 6 types of action primitives
to better illustrate the interaction dynamics and behaviors.

B. Framework and Settings: More Details
For our interactive simulation environment based on

SAPIEN, we use the same set of simulation parameters for
all interaction trials. We will release our simulation envi-
ronment and full toolkits for the best reproducibility of our
work and supporting future research. Besides the informa-
tion provided in the main paper (Sec 5.1, Environment), we
describe more detailed settings in our framework.

For general simulation settings, we use frame rate 500
fps, tolerance length 0.001, tolerance speed 0.005, solver
iterations 20 (for constraint solvers related to joints and con-
tacts), with Persistent Contact Manifold (PCM) disabled
(for better simulation stability), with disabled sleeping mode
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(i.e. no locking for presumably still rigid bodies in simula-
tion), and all the other settings as default in SAPIEN release.
Following the SAPIEN suggested criterion, we also disable
collision simulation between each articulated part to its direct
parent node, due to usually omitted or inaccurate geometry
modeling details at joint positions for ShapeNet [1] models.

For physical simulation, we use the standard gravity 9.81,
static friction coefficient 4.0, dynamic friction coefficient 4.0,
and restitution coefficient 0.01. For the object articulation
dynamics simulation, we use stiffness 0 and damping 10.
And for the robot gripper, we use stiffness 1000 and damping
400 for the free 6-DoF robot hand motion, while we use
stiffness 200 and damping 60 for the gripper fingers.

For the rendering settings, we use an OpenGL-based ras-
terization rendering for the fast speed of simulation. We
set three point lights around the object (one at the front,
one from back-left and one from back-right) for lighting the
scene, with mild ambient lighting as well. The camera is
set to have near plane 0.1, far plane 100, resolution 448,
and field of view 35◦. For RGB image inputs, we down-
sample the obtained 448×448 images to 224×224 before
feeding to the UNet backbone. For 3D partial point cloud
scan inputs, we back-project the depth image into a fore-
ground point cloud, by rejecting the far-away background
depth pixels, and then perform furthest point sampling to get
a 10K-size point cloud scan.

Each articulated object is approximated by convex hulls
using the V-HACD algorithm [2] at the part level before
simulation. The object is assumed to be fixed at its root part,
with only its articulated parts movable. After loading each
object to the scene and randomly initializing the starting
articulated part poses, there are chances that the parts are not
still due to the gravity or collision forces. Thus, we wait for
20K time steps to simulate the final rest part states until the
parts are still for 5K steps, or this interaction is invalidated.
We also remove interaction trials if the object parts have
initial collisions, by detecting impulses bigger than 0.0001,
due to unstable simulation outcomes.
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C. Interaction Trials: More Details
In the main paper (Sec 5.1, Action Settings, the second

paragraph), we detailedly defined our pre-programmed mo-
tion trajectories for the six types of action primitives. In the
supplementary video, we further illustrate the interaction
demonstrations in action. Below, we describe how the robot
is driven to follow the desired motion trajectories and how
to collect successful interaction trials.

The dynamics of the articulated objects and robot grip-
per is simulated using a velocity controller, equipped with
the NVIDIA PhysX internal PID controller, that drives the
gripper from one position to another, while the high-level
trajectory planning is done by a simple kinematic-level com-
puted interpolation between the starting and end end-effector
poses with known gripper configurations. The robot gripper
can be intialized as closed (perfectly touched) or open (0.08
unit-length apart).

For an interaction trial to be considered successful, it not
only needs to cause considerable part motion along intended
direction, as described in the main paper (Sec 5.1, Action
Settings, the last paragraph), but has to be a valid interaction
beforehand. First, the interaction direction should belong
to the positive hemisphere along with the surface normal
direction. Second, the robot gripper should have no collision
or contact with the object at the initial state. Otherwise, we
treat this interaction trial to be failed without simulation.
Finally, for the pushing action primitives, we require that the
first-time contact happens between the robot closed gripper
and the target articulated part, to remove the case that the
robot is pushing the other parts if multiple parts are very
close to each other. It is also invalid if the robot hand, instead
of the fingers, to first touch the part. We do not put this
constraint for the pulling primitives, as the open gripper may
touch the other parts first and then grasp the target part. For
these invalid interactions, we mark them as false data points
without measuring the part motion.

D. Training Details and Computational Timing
We use learning rate 0.001 and Adam optimizer. There

is no image-based data augmentation. For 3D scans, we
randomly down-sample point cloud inputs for augmentation.
The input shapes are 224× 224 for images and 10000× 3
for point clouds. Each simulated interaction takes about 2-8s.
With parallel computation, it takes 3-4 days to collect all
offline interactions. The training takes 0.8s for each iteration
and 4-5 days until convergence. As inference is a simple
forward pass, it only takes 4ms to infer for a batch of 32
RGB/depth images.

E. Simulation Assets: Visualization
In Fig. 1, we visualize one example for each of the 15

object categories from SAPIEN [5] we use in our work.

F. More Results on Real-world Data
In Fig. 2, we visualize more results for directly applying

our networks over real-world data.

G. Actionability Scoring Predictions:
More Result Visualization

In Fig. 3, we visualize more example results of the action-
ability scoring module for the six types of action primitives.

H. Action Proposal Predictions:
More Result Visualization

In Fig. 4, we visualize more action proposal predictions
on example shapes for each action primitive.

I. Failure Cases: Discussion and Visualization
We present some interesting failure cases in Fig. 5. Please

see the figure caption for detailed explanations and discus-
sions. From these examples, we see the difficulty of the
task. Also, given the current problem formulation, there are
some intrinsically ambiguous cases that are generally hard
for robot to figure out from a single static snapshot.
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Figure 1. Simulation Assets Visualization. We visualize one example for each of the 15 object categories we use in our work.
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Figure 2. More Results on Real-world Data. We present more results on real-world data that augment Fig. 6 in the main paper. We use 3D
real object scans from Google Scanned Objects [4, 3] and 2D real images from the web2. Here, results are shown over all pixels since we
have no access to the articulated part masks. Though there is no guarantee for the predictions over pixels outside the articulated parts, the
results make sense if we allow motion for the entire objects.
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Figure 3. Actionability Scoring Predictions. We visualize more example predictions of the actionability scoring module for the six types
of action primitives.
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Figure 4. Action Proposal Predictions. We visualize the top-10 action proposal predictions (motion trajectories are 3× exaggerated) for
some example testing shapes under each action primitive. The bottom row presents the cases that no action proposal is predicted, indicating
that these pixels are not actionable under the action primitives.



(a) (b) (c)

pu
sh

pu
ll

(d) (e) (f)

Figure 5. Failure Cases. We visualize some interesting failure cases, which demonstrate the difficulty of the task and some ambiguous cases
that are hard for robot to figure out. For the pushing action, we show (a) an example of gripper-object invalid collision at the initial state,
thus leading to failed interaction, though the interaction direction seems to be successful; (b) a failed interaction due to the fact that the part
motion does not surpass the required amount 0.01 since the interaction direction is quite orthogonal to the drawer surface; and (c) a case that
the door is fully closed and thus not pushable, though there are cases that the doors can be pushed inside in the dataset. For the pulling
action, we present (d) a failed grasping attempt since the gripper is too small and the pot lid is too heavy; (e) a case illustrating the intrinsic
ambiguity that the robot does not know from which side the door can be opened; and (f) a failed pulling attempt as the switch toggle already
reaches the allowed maximal motion range.


