
Supplementary Materials

Mazda Moayeri
Department of Computer Science

University of Maryland
mmoayeri@umd.edu

Soheil Feizi
Department of Computer Science

University of Maryland
sfeizi@cs.umd.edu

Hyperparameter Details

Baseline Finetuning

Architecture ResNet50
Optimizer SGD

Learning Rate 0.001
Momentum 0.9

Epochs 50

SimCLR Encoder Pretraining∗

Architecture ResNet50
Dataset ImageNet

Optimizer LARS-SGD
Learning Rate 4.8

Batch size 4096
Epochs 800

Logistic Regression

Optimizer LGBFS
Max Iterations 1500

Tolerance 0.001
Regularization Penalty `2

Regularization Penalty Weight 1
Table 1. Various hyperparameter choices for experiments pre-
sented in main text. *Note that SimCLR encoder was downloaded
from [1] already trained. We report some details of their training
procedure, as presented on their API.

1. Training Details

In this section, we provide additional details to the train-
ing of the models presented in the main text. The informa-
tion is also presented in Table 1.

1.1. Baseline Training

We train two baseline models. The primary baseline
model (with results presented in the main text) is designed
to be as similar to SimCat as possible. The sole difference
is that the baseline model obtains embeddings by taking
activations from the penultimate layer of a ResNet50 net-

work pretrained on ImageNet in standard supervised fash-
ion. Thus, the convex optimization, backbone, and pre-
trained data are exactly the same between the baseline and
SimCat. The intention with this baseline is to highlight the
way in which the distributions of clean and adversarially
attacked images organize differently in supervised and self
supervised embedding spaces.

The second baseline allows for further fine-tuning of the
pretrained ResNet50. Fine tuning is common practice when
data is limited, and we believe using a pretrained ResNet
highlights how features learned in a self-supervised fashion
are distinct from those learned with label supervision, such
that they better separate attacked and clean images.

Note that choosing the best state for the fine tuned base-
line is challenging in the low data setting, as there is no hold
out set to evaluate generalizability. The reported results for
the fine tuned baseline average the test accuracy for the final
ten epochs of baseline training.

1.2. SimCat Training

The SimCat models consist of a fixed SimCLR encoder,
with a linear layer appended on top for either adversarial
attack classification or detection. The training of SimCat
has two steps: the self-supervised training of the encoder
using the contrastive loss, and the convex optimization of
the linear layer.

Importantly, we stress that the we do not train the Sim-
CLR model, and instead we obtain a pretrained model from
[1]. The pretrained SimCLR encoder we use in our exper-
iments has a ResNet50 backbone. It was trained for 800
epochs on ImageNet data, with a batch size of 4096 and a
LARS-SGD optimizer with a learning rate of 4.8.

We solve the logistic regression for fitting the linear com-
ponent of SimCat with an LGBFS optimizer for 1500 itera-
tions, or to completion, with a tolerance of 0.001 (all Sim-
Cat models converged to an error under the tolerance within
the 1500 iterations). An `2 regularization with penalty
weight 1 is applied.

1



SVHN Training Samples per Attack
Task Attacks 2 5 10 25 50

Detection PGD-`2 63.3 (+13.0) 71.9 (+19.3) 75.0 (+17.0) 81.7 (+7.6) 85.7 (+19.2)
Detection PGD-`∞ 77.3 (+25.1) 82.5 (+25.5) 88.5 (+21.2) 92.4 (+6.9) 94.2 (+2)

Classification PGD `2, PGD `∞ 60.6 (+9.9) 64.1 (+9.4) 70.9 (+11.7) 77.1 (+5.5) 81.5 (+19.6)

IMAGENET Training Samples per Attack
Task Attacks 5 10 25 50 100

Detection PGD-`2, PGD-`∞,
PPGD, LPA,
JPEG-`∞, StAdv,
ReColor, CW-`2

68.5 (+0.7) 71.5 (+3.4) 74.3 (+4.3) 76.5 (+3.4) 79.2 (+2.8)

Classification 27.1 (+3.0) 32.8 (+1.5) 40.7 (+0.9) 48.9 (-1.9) 58.1 (-1.9)

Table 2. Performance of SimCat for detection and classification using few training samples on SVHN (top) and ImageNet (bottom). In
parenthesis, we denote the improvement gained by using SimCat compared to a baseline finetuned pretrained Resnet50 classifier. For
ImageNet, the detector is trained and evaluated over all eight attack types at once, and classification is done over all eight attack types.

SVHN Fixed+Linear Fine Tuned

Detection PGD-`2 +11.5 +15.2
Detection PGD-`∞ +12.2 +16.2

Classification (2-way) +15.7 +11.2

IMAGENET Fixed+Linear Fine Tuned

Multi-attack Detection +6.2 +2.9
Classification (8-way) +11.6 +0.3

Table 3. SimCat accuracy gain over two new baselines: i. fitting
a linear layer atop fixed ResNet50 features (Fixed + Linear); ii.
fine tuning a ResNet50 (Fine Tuned). Both use a ResNet50 pre-
trained on ImageNet, making them stronger than our original base-
line (trained from scratch). Gains are averaged over all training set
sizes originally studied.

2. Fine Tuned Baseline Results

In this section, we present SimCat’s accuracies for eva-
sion attack detection and classification relative to the fine-
tuned baseline in Table 1.1, and summarize the gain over
each baseline in Table 3.

Both baselines perform much more competitively to
SimCat for the tasks on ImageNet data, while the gap is
significantly larger for tasks on SVHN data. This could po-
tentially be caused by the fact that the data seen during pre-
training was from ImageNet, suggesting that when it comes
to capturing the nuances in the distribution of adversarial
examples, feature spaces learned in a supervised fashion
may be more sensitive to changes in data sets than self-
supervised embeddings. This prompts future work investi-
gating the out-of-distribution robustness of self-supervised
features relative to supervised features. Furthermore, the
fine tuned baseline closes the gap with SimCat far better
than the other baseline, indicating that the sample efficiency
of SimCat is what allows for its accuracy gain over the fine
tuned baseline. Lastly, there are some instances where in-

Attack Bound Step size Iterations
PGD-`2 1.0 0.2 40
PGD-`∞ 8 / 255 2 / 255 40

Table 4. SVHN PGD attack hyperparameters.

creasing the number of training samples per attack from 25
to 50 cause a significant drop off in performance of the fine
tuned baseline (SVHN PGD-`2 detection, SVHN PGD-`2
vs PGD-`∞ classification), highlighting the vulnerability of
overfitting in supervised models trained on small amounts
of data. Seeing as both SimCat and the fixed+linear baseline
do not experience similar drop offs, it is possible that the
simple model complexity of a single learnable linear layer
and the convex optimization of regularized logistic regres-
sion creates increased generalizability.

3. Generating Adversarial Examples
3.1. Evasion Attacks

We experiment on two sets of evasion attacks. For each
threat model, we obtain 200 poisons. The first set comes
from performing `2 and `∞ PGD attacks on SVHN images,
with budgets of ε = 1.0 and ε = 8/255 respectively. Full
details on the attacks are presented in table 4.

The ImageNet adversarial attacks were obtained from
the human study conducted in [2]. We use the data from
the ‘large’ level bound for each of the attacks. The specific
bounds for each threat model is described in table 5, as in-
formed by the values in appendix D in [2], which also con-
tains the attack bounds for the ‘small’ and ‘medium’ level
attacks, whose perceptibilities are presented in Section 3 of
the main text. Additionally, we perform Carlini-Wagner `2
attacks on 200 images. One important distinction is that we
set c = 0.25, while the original Carlini-Wagner formulation
finds (via binary search) and uses the smallest c value that
yields a successful attack. We choose the larger c value to



Attack Bound
PGD-`2 2400
PGD-`∞ 8

PPGD 1
LPA 1

JPEG-`∞ 0.25
ReColorAdv 0.12

StAdv 0.1
CW `2 0.25

Table 5. Bounds on each attack for the ImageNet dataset, as ob-
tained from the user study data from [2]. The entry for Carlini-
Wagner attacks refers to the c value in the attack formulation,
which controls strength of attack relative to amount of distor-
tion. The bounds assume images have pixels in the range [0,255],
though this only effects the entries for PGD-`2, PGD-`∞, and
JPEG-`∞ attacks.

match the choice of studying attacks from the ‘large’ bound.

3.2. Poisoning Attacks

Poisons of 5 different types were constructed, includ-
ing Bullseye Polytope, Convex Polytope, Feature Collision,
Clean Label Backdoor, and Hidden Trigger Backdoor, all
following the benchmark protocol outlined in [3] and us-
ing their publicly available implementation of the bench-
mark, specifically for the white box transfer learning set-
ting. The only modifications we make to the benchmark is
to use STL10 data and the pretrained SimCLR encoder as
the fixed feature extractor, on which poisons are developed.
The choice of using the pretrained SimCLR encoder to gen-
erate poisons was to see if SimCat would be vulnerable to
poisons who are generated specifically against it. In table 6,
we list relevant hyperparameters for the poison generation.
We refer the readers to the benchmark for more detail on the
procedure for generating each poison.

For each poison type, 100 target-poisons sets are crafted,
consisting of a single target and 25 corresponding poisons.
During poison defense, we reserve the first 50 sets for train-
ing of detectors, and evaluate poisonings on the latter 50
sets. Note that we only use a small subset of the reserved
poisons in order to train each detector.

4. Evaluating Poisonings and Poison Defense
4.1. Transfer Learning Benchmark Overview

Following the white box transfer learning setting de-
scribed in the benchmark, in each poisoning attempt, a lin-
ear classifier is trained on the representations of 2500 clean
samples and 25 poison samples, as obtained by the fixed
feature encoder that was to used generate poisons (hence
white box). As a reminder, in our experiments, the fixed
feature encoder is the pretrained SimCLR encoder, and the
2500 clean samples are obtained by taking the first 250 sam-

All Poisons

Norm Constraint `∞
Perturbation Bound 8 / 255

Dataset STL10
Image Size 96× 96

Number of Poisons per target 25
Number of Targets 100

Bullseye Polytope

Crafting Iterations 1200
Learning Rate 0.04

Optimizer Adam, Betas (0.9, 0.999)

Convex Polytope

Crafting Iterations 1200
Learning Rate 0.04

Optimizer Adam, Betas (0.9, 0.999)

Feature Collision

Crafting Iterations 120
Step Size 0.001

Watermark Coefficient 0.3

Clean Label Backdoor

Number of Steps 20
Step size 2 / 255
Patch size 15

Hidden Trigger Backdoor

Crafting Iterations 5000
Learning Rate 0.001

Patch size 15
Table 6. Details on poison generation. All hyperparameters follow
the choices set in [3].

ples for each class in the STL10 training set. A poisoning
attempt is successful if the target is misclassified to the de-
sired class (i.e. the class of the poisons). Poison success
rate is the ratio of successful poisoning attempts out of the
50 total possible successes. We also report the clean accu-
racy over all 8000 test samples achieved by the finetuned
model.

4.2. Applying SimCat Detector

In a single trial for poison defense, we train three Sim-
Cat detectors: one on only Bullseye Polytope poisons, one
on only Convex Polytope poisons, and a general detector
on both. The two poison specific detectors are combined to
form an ensemble SimCat detector (denoted Simcat+Ens in
Table 3 in the main text). The training set for each poison-
specific detector is constructed by first selecting ten targets
randomly from the 50 targets reserved for training per poi-
son type. Then, for each target, one out of the 25 corre-



sponding poisons is randomly selected and added to the
training set, yielding a total of twenty samples to fit the Sim-
Cat detector over. An ensemble detector is constructed by
only marking an image as clean if both poison-specific de-
tectors mark the image as clean.

For the general detector, we accumulate the same ran-
domly selected poisons, but use other clean samples, so to
avoid double counting the same target images in the train-
ing set. Thus, the training set for the ensemble detector and
the general detector in a given trial uses the same poisons,
but different clean samples.

Then, to evaluate a detector (general or ensemble), we
apply it over the entirety of the finetuning set and all poisons
to be considered, removing any samples marked as poison.
Then, we evaluate each poisoning, inserting only poisons
that bypass the detector, and also only using the clean sam-
ples that were not falsely marked as poison by the detector.
In total, there are 50 poisonings tested for each poison type.

We repeat this process over five trials, reporting the av-
erage results in Table 3 in the main text.

5. ImageNet Evasion Attack Classification
In this section, we offer additional results for ImageNet

adversarial attack classification. In table 8, we show the
corresponding heat maps for SimCat classification of eight
evasion attack types at varying levels of sample efficiency,
corresponding to the results in Table 1 in the main text. All
results presented are averaged over ten trials. While SimCat
achieves reasonable accuracies with as little as 10 training
samples per attack type, the performance increases dramat-
ically when allowing for as many as 100 training samples
per attack type. We note that this is still too small a train-
ing set to successfully train a baseline classifier. However,
unlike with detection, the baseline classifier largely exceeds
random guessing, outperforming random classification by
about a factor of 2.5.

6. Adaptive Adversarial Training
In this section, we elaborate on the experimental proce-

dure for the adaptive attack and adversarial training men-
tioned in Section 7 of the main text. In table 7, we provide
the details for the attack used during adversarial training, as
well as details on adversarial training results found in Table
5 of the main text.

A clarifying note is that in adversarial training, we craft
adaptive attacks by designing perturbations to the adversar-
ial examples in our training set. This way, we do not sim-
ply perform adversarial training on PGD-`2 attacks, but in-
stead train over the diverse set of adversarial attacks in our
training set, as well as slightly perturbed versions of those
attacks, such that they also evade detection. This is made
clear in the algorithm pseudocode in the main text, but may

Adaptive Attack

Norm Constraint `2
Perturbation Bound 2.0

Attack method PGD
Number of Steps 20

Step Size 0.05

Adversarial Training

Epochs 20
Training Samples per Attack 25

β 100
Random Resized

Augmentation Crop, then Random
Horizontal Flip

Table 7. Details on hyperparameters for adaptive attack and adver-
sarial training.

otherwise by ambiguous. To further attempt to retain the
qualities of the different attack types present in our training
set, we choose a small step size and low number of PGD
steps in our attack.

References
[1] William Falcon and Kyunghyun Cho. A framework for

contrastive self-supervised learning and designing a new ap-
proach. arXiv preprint arXiv:2009.00104, 2020. 1

[2] Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. Perceptual
adversarial robustness: Defense against unseen threat mod-
els. In International Conference on Learning Representations,
2021. 2, 3

[3] Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P
Dickerson, and Tom Goldstein. Just how toxic is data poi-
soning? a unified benchmark for backdoor and data poisoning
attacks, 2020. 3



10 samples per threat model 25 samples per threat model
Accuracy: 32.8 Accuracy: 40.7

50 samples per threat model 100 samples per threat model
Accuracy: 48.9 Accuracy: 58.1

Table 8. SimCat classification accuracy of eight attack types over different sizes of training sets. Each figure is labeled with the number of
samples per threat model included in the training set, as well as the classification accuracy. All results are averaged over ten trials.


