
Appendices

A1. AdvRush Implementation Details
Following DARTS, the search space of AdvRush in-

cludes following operations:

• Zero Operation

• Skip Connect

• 3x3 Average Pooling

• 3x3 Max Pooling

• 3x3 Separable Conv

• 5x5 Separable Conv

• 3x3 Dilated Conv

• 5x5 Dilated Conv

The pseudo code is presented in Algorithm 1.

Algorithm 1: AdvRush (Search)
Input : E = total number of epochs for search

Ewarmup = number of epochs to warm-up
γ = regularization strength

Output: f∗A(·) = final architecture

1 Initialize fsuper(ω0, α0)
2 For i = from 1 to E:
3 If i ≤ Ewarmup

4 Update ωi using ∇ωLtrain(ωi−1, αi−1) (SGD)
5 Update αi using ∇αLval(ωi, αi−1) (Adam)
6 Else
7 Update ωi using ∇ωLtrain(ωi−1, αi−1) (SGD)
8 Update αi using ∇α[Lval(ωi, αi−1) + γLλ] (Adam)
9 End

10 End
11 Derive f∗A(·) through discretization rule of DARTS

from fsuper(ωE , αE)

A2. Hyperparameters and Datasets
For adversarial training, a different set of hyperparam-

eters for each dataset. Hyperparameter settings for the
datasets used in our experiments are provided in Table A1.
Details regarding the datasets are provided in Table A6.

Table A1. Details of hyperpameters used for adversarial training
on different datasets. Learning rate is decayed by the factor of 0.1
at selected epochs. CIFAR refers to both CIFAR-10 and -100.

CIFAR SVHN Tiny-ImageNet

Optimizer SGD SGD SGD

Momentum 0.9 0.9 0.9

Weight decay 1e-4 1e-4 1e-4

Epochs 200 200 90

LR 0.1 0.01 0.1

LR decay (100, 150) (100, 150) (30, 60)

A3. Difference in Lλ

In Figure A1, we visualize how the difference in α up-
date rule between DARTS and AdvRush affects the value of
Lλ. We use γ of 0.01 for AdvRush, and Lλ is introduced at
the 50th epoch. Notice that AdvRush experiences a steeper
drop in Lλ; this phenomenon implies that the final supernet
of AdvRush is indeed smoother than that of DARTS. Since
the only difference in the two compared search algorithms
is the learning objective of α, it is safe to assume that this
extra smoothness is induced solely by the difference in α.

λ
L

Search epoch
0 10 20 30 40 50 60

0

10

20

30

40

50
DARTS AdvRush

Figure A1. The difference in value of Lλ between DARTS and
AdvRush. Lλ is introduced at Epoch 50, noted in a gray dotted
line. The red arrow points out the gap in Lλ between the two
algorithms, caused by different α update rules.

A4. More Input Loss Landscapes
We provide additional input loss landscapes of other

tested architectures after standard training (Figure A4) and
adversarial training (Figure A5). All loss landscapes are
drawn using the CIFAR-10 dataset. In both figures, ~n and
~r denote perturbations in normal and random directions, re-
spectively. Degrees of perturbation in input data for stan-
dard trained and adversarially trained architectures are set
differently to account for the discrepancy in their sensitivity
to perturbation.

A5. Architecture Visualization
The architectures used for the analysis in Section 6.3 of

the main text are visualized in Figure A3 and A2.

A6. HRS Calculation
HRS is calculated as follows:

HRS =
2CR

C +R
(A1)



Table A2. Effect of the change in the magnitude of γ. Baseline
refers to the AdvRush with default γ of 0.01. The best result in
each column is in bold, and the second best result is underlined.

Arch
Std. Tr. Adv. Tr.

Clean FGSM HRS Clean PGD20 HRS

PDARTS 97.49% 54.51% 69.92 85.37% 51.32% 64.10
Arch 0 97.58% 55.91% 71.09 87.30% 53.07% 66.01
Arch 1 95.59% 47.54% 63.50 85.65% 52.70% 65.25
Arch 2 95.55% 56.57% 71.06 85.68% 52.93% 65.44
Arch 3 95.24% 48.46% 64.24 83.15% 53.42% 64.05
Arch 4 95.45% 50.75% 66.27 83.03% 53.67% 65.20
Arch 5 95.05% 45.53% 61.57 83.04% 48.76% 61.44
Arch 6 94.93% 52.20% 67.36 82.82% 48.41% 61.10
Arch 7 94.01% 29.19% 44.55 82.78% 46.48% 59.53
Arch 8 93.24% 24.55% 38.87 81.13% 46.37% 59.01
Arch 9 93.08% 21.19% 34.52 81.87% 46.22% 59.08
Arch 10 93.88% 23.94% 38.15 82.26% 46.81% 59.66

Table A3. Comparison with additional variations of DARTS. The
results below further consolidate the effectiveness of AdvRush.

Search Epoch Clean(%) FGSM(%) PGD20(%)

PGD Search 50 82.25 55.31 46.87
DARTS 60 84.01 59.40 52.03

AdvRush 60 87.30 60.87 53.07

Table A4. Results of using weight decay=5e-4 for adversarial
training show that the robustness of the AdvRush architecture is
unaffected by the choice of training hyperparameters.

Model PGD20(%) Model PGD20(%)

ResNet-18 47.06 DARTS 53.14
DenseNet 51.15 PDARTS 50.07
RACL 52.75 RobNet-Free 50.38

AdvRush 54.61

where C denotes the clean accuracy, and R denotes the
robust accuracy. For standard-trained architectures, we
use the robust accuracy under FGSM attack for R because
the robust accuracy of standard-trained architectures under
PGD attack reaches near-zero. For adversarially-trained ar-
chitectures, we use the robust accuracy under PGD20 attack

for R. C, R, and HRS values for all architectures used in
Section 6.3 of the main text can be found in Table A2.

A7. Additional Baselines
We compare AdvRush against two additional variations

of DARTS, which could provide more meaningful baselines
to further clarify the effectiveness of AdvRush. The first
variation, named ”PGD Search,” applies PGD adversarial
training to both the architecture parameters and the weight
parameters of the supernet and is thus far more computa-
tionally expensive than AdvRush. In the second variation,
we report the search result of removing the regulrization
term in AdvRush; this is equivalent to running DARTS for
60 epochs. The results are reported in Table A3.

A8. Change in Weight Decay
To see whether AdvRush achieves achieves a high ro-

bust accuracy even when the set of hyperparameters for
adversarial training is changed, we adversarially train all
tested architectures using the weight decay value of 5e− 4.
All other hyperparameters are kept the same. The results
are reported in Table A4. Although all the architectures
experience some amount of increase in the robust accu-
racy after changing the value of the weight decay factor,
AdvRush once again achieves the highest robust accuracy
among them.

A9. Extended Results on Other Datasets
In addition to the results in the main text, we conduct

PGD attack with different number of iterations and evalu-
ate the robust accuracy on CIFAR-100, SVHN, and Tiny-
ImageNet. We use varying iterations from 7 to 1000. The
results are visualized in Figure A6. AdvRush consistently
outperforms other architectures, regardless of the strength
of the adversary.

A10. Full Ablation Results
In Table A5, the full ablation analysis of AdvRush in-

cluding the robust accuracies under AutoAttack is pre-
sented. No matter the value of γ used, architectures
searched with AdvRush achieve high robust accuracies un-
der AutoAttack. Such results suggest that AdvRush does
not require excessive tuning of γ to search for a robust neu-
ral architecture.



Normal Cell Reduction Cell

Arch 5

Arch 6

Arch 7

Arch 8

Arch 9

Arch 10

c_{k-2}
0

skip_connect

1
max_pool_3x3

2

dil_conv_3x3 3

dil_conv_3x3

c_{k-1}

dil_conv_5x5

dil_conv_5x5

dil_conv_3x3

sep_conv_5x5 c_{k}

c_{k-2}
0

skip_connect

1
max_pool_3x3

2

dil_conv_3x3 3

dil_conv_3x3

c_{k-1}

dil_conv_5x5

dil_conv_5x5

dil_conv_3x3

sep_conv_5x5 c_{k}

c_{k-2}

0
dil_conv_3x3

1max_pool_3x3

c_{k-1} max_pool_3x3

skip_connect

2

max_pool_3x3

3

skip_connect
dil_conv_3x3

skip_connect
c_{k}

c_{k-2}
0

dil_conv_5x5

1
max_pool_3x3

2

dil_conv_3x3 3

dil_conv_3x3

c_{k-1}

dil_conv_5x5

dil_conv_5x5

dil_conv_3x3

sep_conv_5x5 c_{k}

c_{k-2}
0

skip_connect

1
skip_connect

2

skip_connect 3

skip_connect

c_{k-1}

sep_conv_3x3

dil_conv_3x3

dil_conv_5x5

dil_conv_3x3 c_{k}

c_{k-2}

0
max_pool_3x3

1avg_pool_3x3

c_{k-1} max_pool_3x3

max_pool_3x3

2

max_pool_3x3

3

max_pool_3x3
skip_connect

skip_connect
c_{k}

c_{k-2}

0

skip_connect
1skip_connect

2

skip_connect

3dil_conv_3x3

c_{k-1}

dil_conv_3x3

dil_conv_3x3

skip_connect

c_{k}
dil_conv_3x3

c_{k-2}

0

dil_conv_5x5

1

dil_conv_3x3
3

dil_conv_5x5

c_{k-1}

max_pool_3x3

dil_conv_5x5

2dil_conv_5x5
dil_conv_5x5

dil_conv_3x3

c_{k}

c_{k-2}

0

skip_connect
1skip_connect

2

skip_connect

3skip_connect

c_{k-1}

dil_conv_3x3

dil_conv_3x3

skip_connect

c_{k}
dil_conv_3x3

c_{k-2}

0

dil_conv_5x5

1

dil_conv_3x3

3

dil_conv_5x5

c_{k-1}
max_pool_3x3

dil_conv_5x5
2

dil_conv_5x5

dil_conv_3x3

c_{k}

skip_connect

c_{k-2}
0

skip_connect

1
skip_connect

2

skip_connect 3

skip_connect

c_{k-1}

dil_conv_5x5

dil_conv_3x3

sep_conv_3x3

dil_conv_3x3 c_{k}

c_{k-2}

0
avg_pool_3x3

c_{k-1} avg_pool_3x3
1

avg_pool_3x3

2

avg_pool_3x3

3
avg_pool_3x3

skip_connect

skip_connect

skip_connect

c_{k}

Figure A2. Architectures searched by adversarial training of the supernet. A normal cell maintains the dimension of input feature maps,
while a reduction cell reduces it. The entire neural network is constructed by stacking 18 normal cells and 2 reduction cells following the
DARTS convention. The reduction cell is placed at the 1/3 and 2/3 points of the network.



Normal Cell Reduction Cell

PDARTS
c_{k-2}

0

sep_conv_3x3 1

sep_conv_5x5
2

sep_conv_3x3

c_{k-1} sep_conv_3x3

skip_connect
c_{k}

skip_connect

3sep_conv_3x3
skip_connect

c_{k-2}

0

sep_conv_3x3 1

avg_pool_3x3

2

sep_conv_3x3

c_{k-1} sep_conv_5x5

dil_conv_3x3

sep_conv_5x5

3sep_conv_3x3
c_{k}

dil_conv_3x3

c_{k-2}

0

sep_conv_3x3
1

skip_connect

2

skip_connect
3

skip_connect

c_{k-1}
sep_conv_3x3
avg_pool_3x3

dil_conv_3x3

skip_connect c_{k}
c_{k-2}

0

sep_conv_3x3

1
sep_conv_5x5

2

sep_conv_3x3 3

skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3
c_{k}

c_{k-2}
0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_5x5 c_{k}

c_{k-2}

0
skip_connect

2sep_conv_3x3

c_{k-1} skip_connect 1

skip_connect

dil_conv_3x3 3

skip_connect
dil_conv_5x5

dil_conv_3x3
c_{k}

c_{k-2} 0dil_conv_5x5

1sep_conv_5x5

2
sep_conv_3x3

3

skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_5x5

c_{k}
c_{k-2}

0

sep_conv_5x5
1skip_connect

2

sep_conv_3x3

3skip_connect

c_{k-1} sep_conv_5x5

sep_conv_3x3

skip_connect

c_{k}

dil_conv_5x5

c_{k-2}
0

sep_conv_5x5

1
sep_conv_3x3

2

skip_connect 3

skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

sep_conv_5x5 c_{k}

c_{k-2}

0
dil_conv_3x3

2dil_conv_3x3

c_{k-1} skip_connect 1

sep_conv_3x3

skip_connect 3

skip_connect
dil_conv_3x3

skip_connect
c_{k}

c_{k-2}
0

sep_conv_3x3

1
sep_conv_3x3

2

skip_connect 3

skip_connect

c_{k-1}

sep_conv_3x3

sep_conv_5x5

dil_conv_3x3

sep_conv_3x3 c_{k}

c_{k-2}
0

sep_conv_3x3

1
dil_conv_3x3

2

skip_connect 3

skip_connect

c_{k-1}

sep_conv_3x3

dil_conv_3x3

sep_conv_3x3

skip_connect c_{k}

Arch 0

Arch 1

Arch 2

Arch 3

Arch 4

Figure A3. Architectures searched by PDARTS and AdvRush. A normal cell maintains the dimension of input feature maps, while a
reduction cell reduces it. The entire neural network is constructed by stacking 18 normal cells and 2 reduction cells following the DARTS
convention. The reduction cell is placed at the 1/3 and 2/3 points of the network.



n
r

n
r

n
r

n
r

n
r

(a) ResNet-18 (b) DenseNet-121 (c) DARTS (d) RACL (e) RobNet-free

Figure A4. Input loss landscapes after standard training on CIFAR-10.

(a) ResNet-18 (b) DenseNet-121 (c) DARTS (d) RACL (e) RobNet-free
n

r
n

r
n

r
n

r
n

r

Figure A5. Input loss landscapes after adversarial training on CIFAR-10.

PGD # of Iterations

R
ob

us
t A

cc
ur

ac
y 

(%
)

7 1020 40 100 500 1000

22

24

26

28

30

ResNet-18 DenseNet-121 PDARTS AdvRush

 R
ob

us
t A

cc
ur

ac
y 

(%
)

7 1020 40 100 500 1000
65

70

75

80

85

90

95

PGD # of Iterations
7 1020 40 100 500 1000

14

16

18

20

22

24

 R
ob

us
t A

cc
ur

ac
y 

(%
)

PGD # of Iterations

(a) CIFAR-100 (b) SVHN (c) Tiny-ImageNet

Figure A6. Robust accuracies on (a) CIFAR-100, (b) SVHN, and (c) Tiny-ImageNet under different iterations of PGD attack.

Table A5. Effect of the change in the magnitude of γ. Baseline refers to AdvRush with default γ of 0.01. The best result in each column is
in bold, and the second best result is underlined.

γ-value Clean FGSM PGD20 PGD100 APGDCE APGDT FABT Square AA

0.001 (x 0.1) 85.65% 60.04% 52.70% 52.39% 51.39% 49.16% 49.13% 49.13% 49.13%
0.005 (x 0.5) 85.68% 60.31% 52.93% 52.61% 51.77% 49.63% 49.62% 49.62% 49.62%
0.01 (Ours.) 87.30% 60.87% 53.07% 52.80% 50.05% 50.04% 50.04% 50.04% 50.04%
0.02 (x 2) 83.15% 59.34% 53.42% 53.19% 52.22% 49.60% 49.60% 49.60% 49.60%
0.1 (x 10) 83.03% 59.69% 53.67% 52.20% 51.22% 49.12% 49.11% 49.11% 49.11%

Table A6. Summary of datasets used for the experiments. CIFAR-10, CIFAR-100, and SVHN, which are available directly from torchvi-
sion, are split only into train and test sets by default.

Dataset # of Train Data # of Validation Data # of Test Data # of Classes Image Size

CIFAR-10 50,000 - 10,000 10 (32× 32)

CIFAR-100 50,000 - 10,000 100 (32× 32)

SVHN 73,257 - 26,032 10 (32× 32)

Tiny-ImageNet 100,000 5,000 5,000 200 (64× 64)


