
Supplementary Material for
Unsupervised Layered Image Decomposition into Object Prototypes

In this supplementary document, we provide quantitative
semantic segmentation results (Section A), analyses of the
model (Section B), training details (Section C) and additional
qualitative results (Section D).

A. Quantitative semantic segmentation results
We provide a quantitative evaluation of our approach

in an unsupervised semantic segmentation setting. We do
not compare to state-of-the-art approaches as none of them
explicitly model nor output categories for objects. We argue
that modeling categories for discovered objects is crucial
to analyse and understand scenes, and thus advocate such
quantitative semantic evaluation to assess the quality of any
object-based image decomposition algorithm.

Evaluation. Motivated by standard practices from super-
vised semantic segmentation and clustering benchmarks, we
evaluate our unsupervised object semantic segmentation re-
sults by computing the mean accuracy (mACC) and the mean
intersection-over-union (mIoU) across all classes (including
background). We first compute the global confusion matrix
on the same 320 images used for object instance segmenta-
tion evaluation. Then, we reorder the matrix with a cluster-to-
class mapping computed using the Hungarian algorithm [10].
Finally, we average accuracy and intersection-over-union
over all classes, including background, respectively yielding
mACC and mIoU.

Results. Our performances averaged over 5 runs are re-
ported in Table 1. Similar to our results for object instance
segmentation, we filter an outlier run out of 5 for Multi-
dSprites based on its high reconstruction loss compared to
other runs (1.93 × 10−3 against {1.51, 1.49, 1.52, 1.57} ×
10−3). For Tetrominoes and Multi-dSprites, our method ob-
tains strong results thus emphasizing that our 2D prototype-
based modeling is well suited for such 2D scene benchmarks.
On the contrary for CLEVR6, there is still room for improve-
ments. Although we can distinguish the 6 different categories
from discovered sprites, such performances suggest that our
model struggles to accurately transform the sprites to match
the target object instances. This is expected since we do
not explicitly account for neither 3D, lighting nor material
effects in our modeling.

B. Model analysis
B.1. Effect of K

Similar to standard clustering methods, our results are
sensitive to the assumed number of sprites K. A purely
quantitative analysis could be applied to select K, e.g. in

Table 1: Multi-object semantic discovery. We report our
mACC and mIoU performances averaged over 5 runs with
stddev. K refers to the number of classes (including back-
ground) and we mark results (M) where one outlier run was
automatically filtered out.

Dataset K mACC mIoU

Tetrominoes [2] 20 99.5 ± 0.2 99.1 ± 0.4
Multi-dSprites [7] 4 91.3M± 0.9 84.0M± 1.4
CLEVR6 [6, 2] 7 73.9 ± 2.1 56.3 ± 2.9

11 13 15 17 18 19 20 21 23 25 28
Number of sprites

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Lo
ss

 (x
 1

e3
)

Figure 1: Effect of K. We report the loss obtained for
varying number of sprites on Tetrominoes, where the ground-
truth number of different shapes is 19.

Figure 1 we plot the loss as a function of the number of
sprites for Tetrominoes and it is clear an elbow method can
be applied to correctly select 19 sprites. Qualitatively, using
more sprites than the ground truth number typically yields
duplicated sprites which we think is not that harmful. For
example, we use an arbitrary number of sprites (40) for the
Instagram collections and we have not found the discovered
sprites to be very sensitive to this choice.

B.2. Effect of λ

The hyperparameter λ controls the weight of the regular-
ization term that counts the number of non-empty sprites
used. In Figure 2, we show qualitative results obtained
for different values of λ on Multi-dSprites. When λ is
zero or small (here λ = 10−5), the optimization typically
falls into bad local minima where multiple layers attempt
to reconstruct the same object. Increasing the penalization
(λ = 10−4) prevents this phenomenon by encouraging recon-
structions using the minimal number of non-empty sprites.
When λ = 10−3, the penalization is too strong and some
objects are typically missed (last example).



Figure 2: Effect of λ. We show reconstructions and instance
segmentations for different values of λ on Multi-dSprites.

B.3. Computational cost

Training our method on Tetrominoes, Multi-dSprites and
CLEVR6 respectively takes approximately 5 hours, 3 days
and 3.5 days on a single Nvidia GeForce RTX 2080 Ti GPU.
Our approach is quite memory efficient and for example on
CLEVR6, we can use a batch size of up to 128 on a single
V100 GPU with 16GB of RAM as opposed to 4 in [2] and
64 in [11].

C. Training details
The full implementation of our approach and all datasets

used are available at https://github.com/monniert/dti-sprites.

C.1. Architecture

We use the same parameter predictor network architec-
ture for all the experiments. It is composed of a shared
ResNet [3] backbone truncated after the average pooling and
followed by separate Multi-Layer Perceptrons (MLPs) heads
predicting sprite transformation parameters for each layer
as well as the occlusion matrix. For the ResNet backbone,
we use mini ResNet-321 (64 features) for images smaller
than 65× 65 and ResNet-18 (512 features) otherwise. When
modeling large numbers of objects (> 3), we increase the
representation size by replacing the global average pooling

1https://github.com/akamaster/pytorch resnet cifar10

Table 2: Transformation sequences used.

Dataset T lay T spr T bkg

Tetrominoes [2] col-pos - -
Multi-dSprites [7] col-pos sim col
CLEVR6 [6, 2] col-pos proj col

GTSRB-8 [15] - col-proj-tps col-proj-tps
SVHN [14] - col-proj-tps col-proj-tps
Weizmann Horse [1] - col-proj-tps col-proj-tps
Instagram collections [13] - col-proj col-proj

by adaptive ones yielding 4×4×64 features for mini ResNet-
32 and 2× 2× 512 for ResNet-18. Each MLP has the same
architecture, with two hidden layers of 128 units.

C.2. Transformation sequences

Similar to DTI-Clustering [13], we model complex im-
age transformations as a sequence of transformation mod-
ules which are successively applied to the sprites. Most of
the transformation modules we used are introduced in [13],
namely affine, projective and TPS modules modeling spatial
transformations and a color transformation module. We aug-
ment the collection of modules with two additional spatial
transformations implemented with spatial transformers [4]:
• a positioning module parametrized by a translation vector

and a scale value (3 parameters) and used to model coarse
layer-wise object positioning,
• a similarity module parametrized by a translation vector,

a scale value and a rotation angle (4 parameters).
The transformation sequences used for each dataset are

given in Table 2. All transformations for the multi-object
benchmarks are selected to mimic the way images were
synthetically generated. For real images, we use the col-
proj-tps default sequence when the ground truth number of
object categories is well defined and the col-proj sequence
otherwise. Visualizing sprites and transformations helps
understanding the results and adapting the transformations
accordingly.

C.3. Implementation details

Both sprite parameters and predictors are learned jointly
and end-to-end using Adam optimizer [8] with a 10−6 weight
decay on the network parameters. Background, sprite appear-
ances and masks are respectively initialized with averaged
images, constant value and Gaussian weights. To constrain
sprite parameters in values close to [0, 1], we use a softclip
function implemented as a piecewise linear function yielding
identity inside [0, 1] and an affine function with 0.01 slope
outside [0, 1]. We experimentally found it tends to work
better than (i) a traditional clip function which blocks gra-
dients and (ii) a sigmoid function which leads to very small
gradients. Similar to [13], we adopt a curriculum learning

https://github.com/monniert/dti-sprites
https://github.com/akamaster/pytorch_resnet_cifar10


Figure 3: Learning binary masks. We compare results on
Tetrominoes obtained with (right) and without (left) injecting
noise in masks.

strategy of the transformations by sequentially adding trans-
formation modules during training at a constant learning
rate until convergence, then use a multi-step policy by multi-
plying the learning rate by 0.1 once convergence has been
reached. For the experiments with a single object on top of
a background, we use an initial learning rate of 10−3 and
reduce it once. For the multi-object experiments, because
spatial transformations are much stronger, we use an initial
value of 10−4 and first train global layer-wise transforma-
tions, using frozen sprites during the first epochs (initialized
with constant value for appearances and Gaussian weights
for masks). Once such transformations are learned, we learn
sprite-specific transformations if any and reduce after con-
vergence the learning rate for the network parameters only.
Additionally, in a fashion similar to [13], we perform sprite
and predictor reassignment when corresponding sprite has
been used for reconstruction less than 20/K% of the images
layers. We use a batch size of 32 for all experiments, except
for GTSRB-8 and SVHN where a batch size of 128 is used.

C.4. Learning binary masks

There is an ambiguity between learned mask and color
values in our raw image formation model. In Figure 3, we
show examples of sprites learned following two settings: (i)
a raw learning and (ii) a learning where we constrain mask
values to be binary. Although learned appearance images sc

(first row) and masks sα (second row) are completely differ-
ent, applying the masks onto appearances (third row) yields
similar images, and thus similar reconstructions of sample
images. However, resulting sprites (last row) demonstrate
that the spatial extent of objects is not well defined when
learning without any constraint.

Since constraining the masks to binary values actually
resolves ambiguity and forces clear layer separations, we
follow the strategy adopted by Tieleman [16] and SCAE [9]
to learn binary values, and propose to inject during train-
ing uniform noise ∈ [−0.4, 0.4] into the masks before ap-
plying our softclip. Intuitively, such stochasticity prevents
the masks from learning appearance aspects and can only

be reduced with values close to 0 and 1. We experimen-
tally found this approach tends to work better than (i) ex-
plicit regularization penalizing values outside of {0, 1} e.g.
with a x → x2(1 − x)2 function and (ii) a varying tem-
perature parameter in a sigmoid function as advocated by
Concrete/Gumbel-Softmax distributions [12, 5].

We compare our results obtained with and without in-
jecting noise into the masks on Tetrominoes, where shapes
have clear appearances. Quantitatively, while our full model
reaches almost a perfect score for both ARI-FG and ARI met-
rics (resp. 99.6% and 99.8%), these performances averaged
over 5 runs are respectively 77.8% and 89.1% when noise is
not injected into the masks during learning. We show quali-
tative comparisons in Figure 3. Note that the masks learned
with noise injection are binary and sharp, whereas the ones
learned without noise contain some appearance patterns.

D. Additional qualitative results
We provide more qualitative results on the multi-object

synthetic benchmarks, namely Tetrominoes (Fig. 4), Multi-
dSprites (Fig. 5) and CLEVR6 (Fig. 6). For each dataset, we
first show the discovered sprites (at the top), with colored
borders to identify them in the semantic segmentation re-
sults. We then show 10 random qualitative decompositions.
From left to right, each row corresponds to: input sample,
reconstruction, semantic segmentation where colors refer to
the sprite border colors, instance segmentation where col-
ors correspond to different object instances, and full image
decomposition layers where the borders are colored with
respect to their instance mask color. Note how we manage to
successfully separate the object instances as well as identify
their categories and spatial extents.

For additional decompositions, we urge the readers to
visit imagine.enpc.fr/˜monniert/DTI-Sprites/extra results.

References
[1] Eran Borenstein and Shimon Ullman. Learning to Segment.

In ECCV, 2004. 2
[2] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick

Watters, Chris Burgess, Daniel Zoran, Loic Matthey, Matthew
Botvinick, and Alexander Lerchner. Multi-Object Represen-
tation Learning with Iterative Variational Inference. In ICML,
2019. 1, 2

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In CVPR,
2016. 2

[4] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial Transformer Networks. In NIPS,
2015. 2

[5] Eric Jang, Shixiang Gu, and Ben Poole. Categorical Repa-
rameterization with Gumbel-Softmax. In ICLR, 2017. 3

[6] Justin Johnson, Bharath Hariharan, Laurens van der Maaten,
Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. CLEVR:

https://imagine.enpc.fr/~monniert/DTI-Sprites/extra_results/index.html


Figure 4: Tetrominoes results. We show discovered sprites
(top) and 10 random decomposition results (bottom).

A diagnostic dataset for compositional language and elemen-
tary visual reasoning. In CVPR, 2017. 1, 2

[7] Rishabh Kabra, Chris Burgess, Loic Matthey,
Raphael Lopez Kaufman, Klaus Greff, Malcolm
Reynolds, and Alexander Lerchner. Multi-object datasets.
https://github.com/deepmind/multi object datasets/, 2019. 1,
2

[8] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In ICLR, 2015. 2

[9] Adam Kosiorek, Sara Sabour, Yee Whye Teh, and Geoffrey E
Hinton. Stacked Capsule Autoencoders. In NeurIPS, 2019. 3

[10] H. W. Kuhn and Bryn Yaw. The Hungarian method for the
assignment problem. Naval Research Logistic Quarterly,
1955. 1

[11] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner,
Aravindh Mahendran, Georg Heigold, Jakob Uszkoreit,
Alexey Dosovitskiy, and Thomas Kipf. Object-Centric Learn-
ing with Slot Attention. In NeurIPS, 2020. 2

[12] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The
Concrete Distribution: A Continuous Relaxation of Discrete

Figure 5: Multi-dSprites results. We show discovered
sprites (top) and 10 random decomposition results (bottom).

Figure 6: CLEVR6 results. We show discovered sprites
(top) and 10 random decomposition results (bottom).



Random Variables. In ICLR, 2017. 3
[13] Tom Monnier, Thibault Groueix, and Mathieu Aubry. Deep

Transformation-Invariant Clustering. In NeurIPS, 2020. 2, 3
[14] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,

Bo Wu, and Andrew Y Ng. Reading Digits in Natural Images
with Unsupervised Feature Learning. In NIPS Workshop,
2011. 2

[15] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs.
computer: Benchmarking machine learning algorithms for
traffic sign recognition. Neural Networks, 2012. 2

[16] Tijmen Tieleman. Optimizing Neural Networks That Generate
Images. PhD Thesis, University of Toronto, 2014. 3


