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Below we provide implementation details for the baseline methods and the alternative deep architectures tested in our
paper. We further include additional results, including examples of reconstructions with our method.

1. Baselines
Colmap baseline. In the calibrated experiments (Table 2 in the paper), for fair comparison, we applied Colmap [9] directly
to the points tracks provided by Olsson’s dataset [7] and fixed the intrinsic camera parameters to those provided as ground
truth.

Linear baseline. We tested Jiang et al.’s method [3] while ignoring viewing graph edges for which the number of matching
points was lower than a certain threshold. We used thresholds of 30, 200, 500 matching points and report those results for
which the lowest reprojection error, before bundle adjustment, was obtained.

2. Alternative deep architectures
The two right most columns in Table 5 in the paper show results of two novel deep architectures which were developed for
comparison to our deep network architecture. The details are given below.

Set neural network. For a scene with m cameras, the input to this network is a set of m random feature vectors of size
12 that provide unique ids to each camera. Inspired by [8, 11], our set network is composed of three sub-networks where
each sub-network is an equivariant set network. The first sub-network is applied to each feature vector and calculates a local
feature for each camera. The second sub-network is applied to each such local feature. The outputs for all cameras are
then averaged, producing a global scene feature vector. Finally, the camera parameters are predicted by applying the third
sub-network to both the local and global feature. In summary, the set network prediction for camera i is defined as follows

zi = S1(vi)

zg =
1

m

m∑
i=1

S2(zi)

Pi = S3(zi, zg).

Each Sk is a fully connected network and vi is the initial random vector of camera i.

Graph neural network. Here, the cameras are represented by the nodes of a graph, called the viewing graph. An edge
connects a pair of nodes if the respective images share at least 30 tracks, in which case a fundamental matrix is computed.
The fundamental matrices are used as edge input features, while as with the set network model, random vectors form the
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Scan #Images #Points
Error (pixels)

Before BA After BA
Ours GPSFM Ours GPSFM PPSFM VarPro

Alcatraz Courtyard 133 23674 1.55 20.34 0.52 0.52 0.57 0.52
Alcatraz Water Tower 172 14828 2.18 16.5 0.47 0.63 0.59 0.47
Alcatraz West Side Gardens 419 65072 9.54 1007.5 0.76 326.99 1.77 -
Basilica Di San Petronio 334 46035 7.9 1871.41 0.96 60.69 0.63 -
Buddah Statue 322 156356 18.88 919.26 2.93 96.96 0.41 -
Buddah Tooth Relic Temple Singapore 162 27920 4.59 18.53 0.6 0.62 0.71 0.6
Corridor 11 737 0.3 0.64 0.26 0.26 0.27 0.26
Ecole Superior De Guerre 35 13477 0.75 1.88 0.26 0.26 0.28 0.26
Dinosaur 319 36 319 2.35 4.66 1.53 0.43 0.47 0.43
Dinosaur 4983 36 4983 1.96 1.54 0.57 0.42 0.47 0.42
Doge Palace Venice 241 67107 3.6 170.93 0.6 3.52 0.67 -
Eglise du dome 85 84792 1.1 8.41 0.24 0.24 0.25 -
Drinking Fountain Somewhere In Zurich 14 5302 0.33 1.29 0.28 0.28 0.31 0.28
East Indiaman Goteborg 179 25655 3.31 99.38 0.99 5.11 0.67 -
Folke Filbyter 40 21150 8.87 1.78 8.58 0.82 0.33 277.89
Golden Statue Somewhere In Hong Kong 18 39989 0.35 0.81 0.22 0.22 0.24 0.22
Gustav Vasa 18 4249 0.23 1.82 0.16 0.16 0.17 0.16
GustavIIAdolf 57 5813 14.77 5.91 5.83 0.23 0.24 0.23
Model House 10 672 0.37 3.66 0.34 1.12 0.4 0.34
Jonas Ahlstromer 40 2021 14.38 28.83 4.72 0.18 0.2 0.18
Lund University Sphinx 70 32668 3.64 10.0 0.34 0.45 0.37 0.34
Nijo Castle Gate 19 7348 0.71 20.08 0.39 0.39 0.43 0.39
Pantheon Paris 179 29383 1.75 44.85 0.49 2.85 0.62 -
Park Gate Clermont Ferrand 34 9099 0.61 13.82 0.31 0.32 0.49 0.31
Plaza De Armas Santiago 240 26969 5.1 81.01 0.64 3.14 0.71 -
Porta San Donato Bologna 141 25490 1.58 33.36 0.4 0.61 3.75 0.4
The Pumpkin 195 69335 14.45 8.97 0.38 0.38 0.42 -
Skansen Kronan Gothenburg 131 28371 1.19 8.9 0.41 0.44 0.44 -
Skansen Lejonet Gothenburg 368 74423 10.82 69.81 2.05 7.48 1.28 -
Smolny Cathedral St Petersburg 131 51115 1.66 83.78 0.46 0.46 0.5 -
Some Cathedral In Barcelona 177 30367 3.67 14.77 0.51 0.51 0.54 -
Sri Mariamman Singapore 222 56220 7.06 39.89 0.61 0.78 0.85 -
Sri Thendayuthapani Singapore 98 88849 2.12 13.25 0.31 0.56 0.33 -
Sri Veeramakaliamman Singapore 157 130013 6.47 99.99 0.52 1.78 0.66 -
Thian Hook Keng Temple Singapore 138 34288 7.59 26.78 0.54 0.55 0.66 0.54
King’s College University Of Toronto 77 7087 2.27 22.89 0.78 2.35 0.26 0.24
Tsar Nikolai I 98 37857 6.04 13.21 2.43 0.33 0.31 0.29
Urban II 96 22284 16.91 87.25 6.84 0.27 0.31 3.61

Table 1: Single scene experiments in the uncalibrated setup. The table shows mean reprojection errors obtained with our method before
and after BA, compared to GPSFM [5], PPSFM [6] and VarPro [2]. (Smaller is better.) Our comparison to VarPro is partial, since in a
number of experiments it exceeded either memory or runtime limitations.

node input features. We use a message-passing scheme [1] and global feature as described for the set network model. Each
message-passing layer is of the following form

zli =
1

|Ni|
∑
j∈Ni

mlpl(z
l−1
i , zl−1

j , Fij)

where zli is the local feature of node i in layer l, Ni are the neighbors of node i and Fij is the fundamental matrix measured
between cameras i and j.

Both the set and the graph models predict camera parameters, while the 3D points are treated as free variables. In both
cases we minimize the reprojection loss defined in equation (3) in the paper.

3. Results
Single scene recovery. In the single scene recovery mode given a single track tensor representing point correspondences
across images of some scene we attempt to minimize the reprojection loss, where the network is used to parameterize the
loss. Tables 1 and 2 show results of our method before and after bundle adjustment in the uncalibrated and calibrated
settings. We compare our results before bundle adjustment only to global methods since sequential methods apply bundle
adjustment in each iteration. Notably, already before bundle adjustment our method often achieves sub-pixel accuracies,
significantly surpassing GPSFM in the uncalibrated setting and GESFM and Linear in the calibrated setting. Figures 1-3
show 3D reconstructions and camera parameter recovery in the calibrated setting. In addition, a failure case is shown in
Figure 4. Figure 5 shows the evolution of structure and camera parameters during optimization.



Scan #Images #Points
Before BA After BA

terror Rerror Reprojection Err. terror Rerror Reprojection Err.
Ours GESFM Linear Ours GESFM Linear Ours GESFM Linear Ours GESFM Linear Colmap Ours GESFM Linear Colmap Ours GESFM Linear Colmap

Alcatraz Courtyard 133 23674 0.16 0.767 0.378 0.619 1.851 0.729 1.64 66.5 16.58 0.015 0.259 0.014 0.014 0.049 0.533 0.042 0.043 0.81 4.67 1.27 0.81
Alcatraz Water Tower 172 14828 0.518 8.332 1.643 0.933 1.136 1.525 2.13 131.81 56.26 0.116 9.147 1.643 0.115 0.23 9.997 1.525 0.228 0.55 25.93 73.72 0.55
Buddah Tooth Relic Temple Singapore 162 27920 0.233 2.124 1.325 1.03 2.95 2.058 2.06 89.94 47.5 0.014 1.429 0.125 0.015 0.081 4.709 0.551 0.083 0.85 13.22 2.66 0.85
Doge Palace Venice 241 67107 0.342 1.688 - 1.163 2.75 - 3.62 123.53 - 0.029 1.608 - 0.012 0.211 5.317 - 0.031 1.0 22.32 - 0.98
Door Lund 12 17650 0.006 (1.603) 0.226 0.024 (2.041) 1.148 0.32 (227.0) 20.89 0.001 (0.973) 0.001 0.001 0.006 (7.552) 0.005 0.005 0.3 (9.21) 0.3 0.3
Drinking Fountain Somewhere In Zurich 14 5302 0.004 (0.016) 0.024 0.031 (0.054) 0.077 0.33 (0.94) 0.58 0.002 (0.002) 0.002 0.002 0.007 (0.01) 0.007 0.007 0.31 (0.27) 0.31 0.31
East Indiaman Goteborg 179 25655 0.621 2.783 (2.235) 3.814 11.129 (3.284) 4.13 170.63 (94.46) 0.509 3.099 (2.235) 0.065 3.117 12.396 (3.284) 0.251 1.85 32.37 (312.9) 0.89
Ecole Superior De Guerre 35 13477 0.081 (0.006) 0.048 0.318 (0.057) 0.182 0.72 (0.35) 1.48 0.005 (0.002) 0.005 0.005 0.024 (0.035) 0.024 0.024 0.34 (0.14) 0.34 0.34
Eglise du dome 85 84792 0.205 (1.958) 0.128 0.808 (2.851) 0.903 0.91 (90.83) 26.4 0.01 (1.425) 0.046 0.01 0.037 (3.631) 0.162 0.036 0.27 (6.21) 0.76 0.27
Folke Filbyter 40 21150 0.125 (0.003) 0.021 74.596 (0.332) 1.94 10.37 (5.74) 72.06 0.118 (0.0) 0.123 0.0 70.157 (0.148) 4.484 0.036 4.29 (0.41) 6.06 0.29
Fort Channing Gate Singapore 27 23627 0.093 0.092 0.139 0.207 0.295 0.659 0.52 2.57 22.69 0.008 0.008 0.013 0.008 0.02 0.02 0.029 0.02 0.25 0.25 0.45 0.25
Golden Statue Somewhere In Hong Kong 18 39989 0.073 0.118 1.153 0.292 0.669 8.264 0.4 4.98 73.7 0.004 0.004 0.004 0.004 0.031 0.03 0.022 0.031 0.27 0.27 0.3 0.27
Gustav Vasa 18 4249 1.085 (0.079) 0.266 34.181 (0.841) 1.658 3.52 (5.21) 11.99 1.145 (0.101) 0.099 0.1 32.266 (0.751) 0.839 0.841 3.15 (0.31) 0.48 0.48
GustavIIAdolf 57 5813 9.714 0.134 0.333 67.784 0.435 1.398 13.91 6.49 31.08 8.524 0.004 0.004 0.004 58.458 0.021 0.021 0.021 11.49 0.26 0.26 0.26
Jonas Ahlstromer 40 2021 10.888 (0.35) 0.895 50.19 (1.994) 10.154 10.82 (36.48) 236.41 10.451 (0.01) 1.259 0.011 47.117 (0.082) 5.391 0.036 8.41 (0.69) 4.69 0.22
King’s College University Of Toronto 77 7087 0.235 (0.152) (1.781) 0.989 (0.645) (1.07) 0.9 (11.87) (27.29) 0.017 (0.005) (1.877) 0.017 0.085 (0.059) (4.624) 0.084 0.34 (0.35) (7.12) 0.34
Lund University Sphinx 70 32668 4.585 0.228 1.199 19.522 0.738 3.476 4.78 7.19 60.64 2.191 0.016 1.512 0.009 8.752 0.058 5.452 0.033 1.36 0.4 4.58 0.39
Nijo Castle Gate 19 7348 0.286 0.141 0.348 1.495 0.399 2.097 1.7 11.18 154.96 0.012 0.011 0.19 0.011 0.069 0.064 0.744 0.064 0.73 0.73 4.84 0.73
Pantheon Paris 179 29383 0.05 0.867 1.275 0.192 3.766 2.655 1.47 79.24 39.69 0.005 0.595 0.011 - 0.04 3.208 0.072 - 0.49 9.71 0.82 -
Park Gate Clermont Ferrand 34 9099 0.125 0.083 0.1 0.391 0.203 0.296 0.57 1.71 10.5 0.022 0.022 0.022 0.022 0.049 0.049 0.049 0.049 0.35 0.35 0.35 0.35
Plaza De Armas Santiago 240 26969 2.944 2.45 - 6.782 6.291 - 7.4 146.56 - 1.383 2.244 - 0.048 2.556 6.344 - 0.122 4.9 15.61 - 1.13
Porta San Donato Bologna 141 25490 0.388 0.949 1.588 2.153 1.013 1.381 2.28 29.5 46.12 0.046 0.169 0.067 0.047 0.095 0.513 0.149 0.099 0.75 3.23 1.16 0.75
Round Church Cambridge 92 84643 1.003 0.486 0.217 2.451 1.021 0.634 2.66 19.04 9.6 0.582 0.493 0.012 0.012 1.107 1.851 0.033 0.035 1.54 2.03 0.41 0.39
Skansen Kronan Gothenburg 131 28371 0.226 0.223 (0.234) 0.736 0.549 (0.679) 1.24 8.82 (18.49) 0.008 0.008 (0.007) 0.008 0.026 0.025 (0.02) 0.025 0.67 0.67 (0.69) 0.67
Smolny Cathedral St Petersburg 131 51115 0.051 0.209 - 0.554 0.493 - 1.66 19.01 - 0.006 0.007 - 0.006 0.033 0.028 - 0.029 0.81 1.0 - 0.81
Some Cathedral In Barcelona 177 30367 0.315 1.776 1.261 0.88 1.519 3.126 2.87 47.12 66.97 0.011 0.013 0.024 0.01 0.026 0.031 0.057 0.025 0.89 1.09 2.09 0.89
Sri Mariamman Singapore 222 56220 0.683 1.758 0.721 2.302 1.433 1.615 4.13 52.13 37.16 0.023 0.614 0.025 0.023 0.077 2.158 0.083 0.078 0.91 7.4 1.17 0.89
Sri Thendayuthapani Singapore 98 88849 3.812 (0.285) 0.375 46.269 (1.561) 1.581 23.37 (15.93) 19.57 2.87 (0.053) 0.034 0.034 44.17 (0.329) 0.138 0.138 8.44 (0.56) 0.72 0.67
Sri Veeramakaliamman Singapore 157 130013 0.597 (1.966) 0.273 2.559 (1.807) 0.519 3.47 (205.96) 18.08 0.04 (1.388) 0.095 0.038 0.175 (3.41) 0.288 0.169 0.73 (34.72) 2.2 0.71
Statue Of Liberty 134 49250 20.012 (4.55) 3.031 46.887 (3.449) 3.357 26.16 (1031.8) 133.81 4.122 (4.782) 28.049 0.099 9.091 (8.281) 2.945 0.213 6.97 (52.05) 5.08 1.25
The Pumpkin 196 69341 14.89 0.513 (1.656) 94.672 2.036 (4.215) 33.41 9.71 (122.54) 14.952 0.022 (14.862) 0.022 98.862 0.092 (3.123) 0.091 24.85 0.57 (24.19) 0.57
Thian Hook Keng Temple Singapore 138 34288 0.082 0.519 0.404 0.832 2.751 3.047 2.75 53.79 62.7 0.008 0.024 0.043 0.008 0.081 0.245 0.424 0.084 1.13 3.32 4.92 1.12
Tsar Nikolai I 98 37857 9.467 0.219 0.261 48.499 0.475 1.437 9.79 5.19 32.86 7.836 0.005 0.005 0.005 36.28 0.018 0.018 0.018 6.53 0.33 0.33 0.33
Urban II 96 22284 9.467 0.774 2.044 47.49 2.077 8.951 9.38 31.71 176.19 9.586 0.036 3.038 0.021 48.214 0.175 16.348 0.107 6.92 0.72 17.61 0.38
Vercingetorix 69 10754 8.788 1.158 2.786 69.328 2.203 2.365 5.08 15.87 65.57 3.104 0.3 1.564 0.011 17.706 1.431 7.138 0.048 1.5 0.54 2.93 0.23
Yueh Hai Ching Temple Singapore 43 13774 0.098 (0.642) 0.303 0.72 (1.813) 1.92 0.94 (27.32) 45.19 0.014 (0.023) 0.059 0.014 0.043 (0.075) 0.26 0.043 0.65 (1.64) 2.06 0.65

Table 2: Single scene experiments in the calibrated setup. The table shows mean camera location error (denoted terror) in meters, mean
orientation error (denoted Rerror) in degrees, and mean reprojection error in pixels obtained with our method before and after BA, compared
to GESFM [4], Linear [3], and Colmap [10]. ( Smaller is better.) In parenthesis experiments in which at least 10% of the cameras are
removed.

Scan #Images #Points
terror Rerror Reprojection Error

Ours Ours Colmap Ours Ours Colmap Ours Ours ColmapNo BA No BA No BA
Folke Filbyter 40 21150 0.093 0.037 0.0 54.025 20.51 0.036 9.78 3.87 0.29
Gustav Vasa 18 4249 0.193 0.099 0.1 2.964 0.839 0.841 0.62 0.48 0.48
GustavIIAdolf 57 5813 0.014 0.004 0.004 0.068 0.021 0.021 0.29 0.26 0.26
Jonas Ahlstromer 40 2021 0.018 0.011 0.011 0.051 0.037 0.036 0.24 0.22 0.22
Plaza De Armas Santiago 240 26969 0.044 0.048 0.048 0.089 0.121 0.122 1.3 1.13 1.13
Sri Thendayuthapani Singapore 98 88849 0.057 0.034 0.034 0.222 0.139 0.138 0.77 0.67 0.67
Statue Of Liberty 134 49250 8.558 1.877 0.099 13.262 3.02 0.213 6.86 1.76 1.25
The Pumpkin 196 69341 0.17 0.022 0.022 0.851 0.092 0.091 0.7 0.57 0.57
Tsar Nikolai I 98 37857 0.024 0.005 0.005 0.092 0.018 0.018 0.38 0.33 0.33
Urban II 96 22284 0.074 0.021 0.021 0.327 0.107 0.107 0.53 0.38 0.38

Table 3: Single scene results using sequential optimization in the calibrated setup. The table show results before and after bundle
adjustment compared to Colmap. The table shows mean camera location error (denoted terror) in meters, mean orientation error (denoted
Rerror) in degrees, and mean reprojection error in pixels. (Smaller is better.)

Sequential optimization. In some experiments, as can be seen in Table 2, our single scene recovery procedure failed to
produce accurate reconstruction. In these cases (we declared failure if the reprojection error exceeded 2 pixels) we applied
instead optimization at a sequential schedule. For this schedule we ordered the images greedily by the number of point tracks
they share with the images that precede them in this order. Using this order, we first ran 500 optimization epochs with just the
first 2 images. Then, after each 500 more epochs we add to this subset the next image in the order. As can be seen in Table
3, this optimization schedule improved the reprojection error for all the failed datasets, yielding in most cases comparable
accuracies to those obtained with Colmap.



Scan #Images #Points Time (seconds)
Inference Fine tuning BA Colmap

Alcatraz Courtyard 133 23674 0.007 199.125 43.512 286.0
Alcatraz Water Tower 172 14828 0.007 110.847 26.44 130.0
Drinking Fountain Somewhere In Zurich 14 5302 0.007 20.302 2.925 16.0
Nijo Castle Gate 19 7348 0.008 24.493 4.308 21.0
Porta San Donato Bologna 141 25490 0.007 194.651 45.416 170.0
Round Church Cambridge 92 84643 0.014 360.97 90.092 229.0
Smolny Cathedral St Petersburg 131 51115 0.004 534.528 101.456 516.0
Some Cathedral In Barcelona 177 30367 0.007 208.542 55.424 451.0
Sri Veeramakaliamman Singapore 157 130013 0.319 291.727 242.888 583.0
Yueh Hai Ching Temple Singapore 43 13774 0.004 45.458 10.539 106.0

Scan #Images #Points Time (seconds)
Inference Fine tuning BA GPSFM

Alcatraz Water Tower 172 14828 0.055 89.646 68.939 137.057
Dino 319 36 319 0.004 8.151 0.475 3.253
Dino 4983 36 4983 0.122 7.66 2.21 4.994
Dome 85 84792 0.203 160.896 76.867 105.837
Drinking Fountain 14 5302 0.01 18.197 3.016 3.348
Gustav Vasa 18 4249 0.007 14.435 2.766 3.449
Nijo 19 7348 0.013 34.397 3.121 6.37
Skansen Kronan 131 28371 0.141 197.531 63.853 93.831
Some Cathedral In Barcelona 177 30367 0.133 185.984 47.597 110.485
Sri Veeramakaliamman Singapore 157 130013 0.314 473.294 195.374 301.713

Table 4: Execution times for our trained model. The table shows execution times in seconds in the calibrated (left) and uncalibrated (right)
settings.

Learning from multiple scenes. Figures 6 and 7 show reconstruction results using our model before and after bundle
adjustment in 3 scenarios: (i) inference using our trained model (ii) inference followed by fine tuning and (iii) short run
of optimization. Table 4 shows execution times for our trained model. We note that using inference only yields a good
initialization for bundle adjustment in a small fraction of a second. Using fine tuning yields more accurate results (See Table
2 in the paper) with execution times similar to Colmap. The short optimization generally yields less accurate results with
execution times similar to fine tuning, emphasizing the importance of the trained model.



(a) Alcatraz Courtyard

(b) Alcatraz Water Tower

(c) Drinking Fountain Somewhere In Zurich

(d) Nijo Castle Gate

Figure 1: Single scene 3D reconstructions and recovery of camera parameters with our method. Each pair shows on the left the triangulated
point cloud and the recovered camera locations and orientations (in red) and on the right one of the input images.



(a) Porta San Donato Bologna

(b) Round Church Cambridge

(c) Smolny Cathedral St Petersburg

(d) Some Cathedral In Barcelona

Figure 2: Single scene 3D reconstructions and recovery of camera parameters with our method. Each pair shows on the left the triangulated
point cloud and the recovered camera locations and orientations (in red) and on the right one of the input images.



(a) Yueh Hai Ching Temple Singapore

Figure 3: Single scene 3D reconstructions and recovery of camera parameters with our method. Each pair shows on the left the triangulated
point cloud and the recovered camera locations and orientations (in red) and on the right one of the input images.

Figure 4: A failure case. Single scene 3D reconstruction and recovery of camera parameters with our method applied to Jonas Ahlstromer
(reprojection error 8.41 pixels). The left image shows the triangulated point cloud, the recovered camera locations and orientations (in red)
and the ground truth camera locations and orientations (in green). The right image is one of the input images.



Epoch 0 Epoch 2000 Epoch 5000

Epoch 10000 Epoch 15000 Epoch 20000

Epoch 25000 Epoch 35000 Epoch 45000

Epoch 60000 Epoch 70000 After BA

Figure 5: 3D structure and camera parameter evolution during the optimization of the network.



(a) Inference before (left) and after (right) BA

(b) Inference + fine tuning before (left) and after (right) BA

(c) Short optimization before (left) and after (right) BA

Figure 6: Alcatraz Water Tower. Reconstruction with our trained model. The figure shows results of inference (top row) and
inference followed by fine tuning (middle row) before BA (left) and after BA (right). The bottom row shows the result of
the short optimization strategy (starting with a random initialization). Each panel shows the recovered cameras positions (in
red) and the recovered 3D points, corresponding to the point tracks. It can be seen that in this case accurate reconstruction
can be obtained either by pure inference or inference followed by fine tuning (+ BA). In contrast, short optimization failed to
accurately recover camera positions, leading to failure of the BA.



(a) Inference before (left) and after (right) BA

(b) Inference + fine tuning before (left) and after (right) BA

(c) Short optimization before (left) and after (right) BA

Figure 7: Round Church Cambridge. Reconstruction with our trained model. The figure shows results of inference (top row)
and fine tuning (middle row) before BA (left) and after BA (right). The bottom row shows the result of the short optimization
(starting with a random initialization). Each panel shows the recovered cameras positions (in red) and 3D points. Here fine
tuning + BA yielded the most accurate reconstruction.
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