
Learning Rare Category Classifiers on a Tight Labeling Budget
(Supplementary)

Ravi Teja Mullapudi2,4

rmullapu@cs.cmu.edu
Fait Poms1

fpoms@cs.stanford.edu
William R. Mark4

billmark@google.com

Deva Ramanan2,3

deva@cs.cmu.edu
Kayvon Fatahalian1

kayvonf@cs.stanford.edu

0.1. Feature update rate

Figure 1 shows variants our approach where we update
features with different frequencies. The plot shows aver-
age F1 accuracy on 50 iNaturalist categories. The three
variants in Figure 1 update the deep feature representa-
tion after every 25, 50 and 100 images are labeled by
a human and correspond to the following configurations
(N = 5, B = 20, Q = 5), (N = 10, B = 10, Q = 5)
and (N = 20, B = 5, Q = 5) respectively. As once can
see updating the features at low frequency (every 100 hu-
man labeled images) results in lower accuracy compared
to more frequent updates, especially in the early iterations
where only a small amount of data is labeled. However,
as one would expect increasing the frequency of updates
gives diminishing returns in accuracy since the represen-
tation change between iterations would be minimal with a
very few additional labeled images.

0.2. Fraction of auto negatives fa

Figure 2 shows variants of our approach where we
change the ratio (fa) of pseudo negatives labeled per hu-
man labeled image. The plot shows average F1 accuracy
on 50 iNaturalist categories and each series corresponds to
a different value of fa. Using a small value for fa (25) re-
sults in slightly lower accuracy. However, our approach is
robust to a range of values of fa and provides significant
improvement compared not using pseudo negatives fa = 0.

0.3. Impact of adaptive sampling

Figure 3 shows variants of our approach where we
change the sampling strategy for picking images to query

1Stanford University 2Carnegie Mellon University 3Argo AI 4Google
Research

50 100 150 200 250 300 350 400 450 500
Images Labeled Per Category

10

20

30

40

M
ea

n
F1

25 50 100

Figure 1. Increasing feature update rate. Plot shows average
F1 accuracy for variants of our approach on 50 iNaturalist cate-
gories as a function of human labeling effort. The variants use
different rates (number of labeled images) of updating the deep
features. Updating at a low frequency (every 100 images) leads
to lower accuracy models, especially in the early iterations. Very
high frequency updates (every 25 images) gives diminishing im-
provements in model accuracy.

50 100 150 200 250 300 350 400 450 500
Images Labeled Per Category

10

20

30

40

M
ea

n
F1

fa = 0 fa = 25 fa = 100 fa = 250 fa = 500

Figure 2. Varying number of pseudo negatives fa. Plot shows
average F1 accuracy for variants of our approach on 50 iNaturalist
categories as a function of human labeling effort. The variants
use different ratio (fa) of pseudo negatives relative to the human
labeled data. Low values of fa leads to slightly lower accuracy but
our overall approach is robust for a wide range of fa.

humans. The plot shows average F1 accuracy on 20 Places
categories. When there is a sufficient number of positives
in the unlabeled data set always sampling the most likely
positives is not effective since we would query humans on
a lot of easy negatives. This scenario occurs with the Places
dataset where there are 5000 positives in the unlabeled data

1

100 200 300 400 500 600 700 800 900 1000
Images Labeled Per Category

10

20

30

40

M
ea

n
F1

Most Likely Positive
Adaptive Sampling

Figure 3. Impact of adaptive sampling. Plot shows average F1
accuracy for variants of our approach on 20 Places categories as a
function of human labeling effort. Our adaptive sampling strategy
for choosing the images to query humans is more effective com-
pared to sampling most likely positives (strategy used by Tropel).

Algorithm 1: Integrating baseline pseudo labeling
approaches.

Input: U , Ip, Md
pre, B, N , Q, fa, method

Output: Md
1...N

1 F ← cacheFeatures(Md
pre, U)

2 Al ← auxiliaryLabels(Md
pre, U)

3 c← computeFeatureCentroid(Md
pre, Ip)

4 Rpos ← rankByCosineSimilarity(c, F)
5 Lp ← Ip, Ln ← {}, Wn ← {}
6 Md

0 ←Md
pre

7 for i← 1 to N do
8 for j← 1 to Q do
9 if |Lp| < |Ln| then

10 Hp, Hn ← queryHumanTopK(B, Rpos)
11 else
12 Hp, Hn ← queryHumanTopK(B, Rent)
13 Lp ← Hp ∪ Lp, Ln ← Hn ∪ Ln

14 Wn ← pseudoNegativeLabels(Rpos, fa)
15 M l ← trainLinearModel(F ,Lp,Ln,Wn)
16 U ← U − (Hp ∪Hn)

17 Rpos ← sortPositiveScore(M l, U)
18 Rent ← sortMarginDistance(M l, U)
19 if method == Distillation and i > 1 then
20 Wp,Wn ← KD-Semi(Md

i−1, U)
21 else if method == Label Propagation then
22 Wp,Wn ← LabelProp(F , Lp, Ln, U)
23 Md

i ← trainBGSplit(Md
i−1,Lp, Ln, Wp, Wn, Al)

24 F ← cacheFeatures(Md
i , U)

for most of the categories. In such scenarios, as Figure 3
shows our adaptive strategy that switches between samples
on the margin and most likely positives performs better than
a fixed strategy which queries humans on images which are
likely to be positives (strategy used by Tropel).

0.4. Baseline details

Algorithm 1 shows modifications to our approach to
incorporate distillation (KD-Semi) and label propagation
(DeepProp) to pseudo label positives in addition negatives.
Lines 19-23 show how we incorporate these pseudo label-
ing techniques, instead of only using pseudo negatives (Wn)
to update the deep representation we use distillation or la-

bel propagation to pseudo label both positives and negatives
(Wp and Wn) and use them when updating the deep repre-
sentation. KD-Semi uses the deep model from the previous
iteration to pseudo label high confidence predictions on un-
labeled data (U). DeepProp uses the cached features F and
current human labeled data Lp, Ln to propagate labels on
the unlabeled data (U).

0.5. Training details

When training deep models in the active active loop we
train for 15 epochs on the currently labeled data. We start
with a learning rate of 0.025 and follow a step schedule for
decaying the learning rate every 5 epochs by a factor of 10.
When training the fully supervised models we train for 50
epochs and follow a step schedule for decaying the learning
rate every 20 epochs by a factor of 10. We use SGD with
momentum and a batch size 256 for training all the models.
The hyper parameters for the background splitting loss are
the same as the ones recommended in the paper, i.e., the
weight of the auxiliary loss is set to 0.1.

2

