
A. Training Settings
For all setups we normalize the images by training set

mean and standard deviation after the application of all aug-
mentations, besides a final cutout, if applicable.

A.1. CIFAR

Following previous work we apply the vertical flip and
the pad-and-crop augmentations and finally a 16 pixel
cutout [3] after TA or generally any augmentation method.
We trained Wide-ResNet models [21] in the Wide-ResNet-
40-2 and the larger Wide-ResNet-28-10 settings. We trained
these models for 200 epochs using SGD with Nesterov Mo-
mentum and a learning rate of 0.1, a batch size of 128, a
5e-4 weight decay, cosine learning rate decay [16].

We trained ShakeShake-26-2x96d for 1600 epochs using
SGD with Nesterov Momentum, a learning rate of 0.01, a
batch size of 128, 1e-3 weight decay and a cosine learning
rate decay.

For the augmented batch setups we followed Zhang et al.
[22]. We used the settings above for the Wide-ResNet-28-
10 evaluations. And like Zhang slightly different settings
for ShakeShake. We use 600 epochs, with a 0.2 learning
rate and a 1e-4 weight decay.

A.2. SVHN

Unlike for CIFAR we do not apply extra augmentations
for SVHN, besides a final 16 pixel cutout [3]. For the full
dataset we trained for 160 epochs using SGD with Nesterov
Momentum of 0.9, a learning rate of 0.005, a batch size of
128, a 1e-3 weight decay and cosine learning rate decay.
For SVHN Core we train with the same settings, except that
we trained for 200 epochs and used a larger weight decay
of 5e-3.

A.3. ImageNet

Like for the other datasets we performed the standard
augmentations of the dataset after the learned augmenta-
tions. That is we performed a randomly resized crop and
scales between 0.08 and 1.0 using bicubic interpolation. We
augmented with horizontal flips, applied a color jitter with
brightness, contrast and saturation strength set to 0.4 and we
applied lighting noise with an alpha of 0.1.

We trained on Imagenet with a ResNet-50 [7] and fol-
lowed the setup of AA [1]. We train for 270 epochs with a
batch size of 2048 distributed among 32 workers. We use
image crops of height 224 considered both a 244 width of
the images, like RA, and a 224 width, like AA. The initial
learning rate of 0.1 is scaled proportional to the batch size
divided by 256. As learning rate schedule we apply a step-
wise 10-fold reduction after 90, 180 and 240 epochs with a
linear warmup of factor 4 over the first 3 epochs. We use
Nesterov Momenutm with a momentum parameter of 0.9
and a weight decay of 1e-4.

Unlike [1] we only use 32 instead of 64 workers out of
cluster limitations and scale the learning rate accordingly.

PIL operation range PIL operation range
identity - auto contrast -

equalize - rotate
−30◦ - +30◦

( −135◦ - +135◦)

solarize
0 - 256

(0 - 256) color
0.1 - 1.9.
(0.01 - 2.)

posterize
4 - 8

(2 - 8) contrast
0.1 - 1.9.
(0.01 - 2.)

brightness
0.1 - 1.9.
(0.01 - 2.) sharpness

0.1 - 1.9.
(0.01 - 2.)

shear x
0.0 - 0.3
0.0 - 0.99 shear y

0.0 - 0.3
0.0 - 0.99

translate x
0 - 10

(0 - 32) translate y
0 - 10

(0 - 32)
cutout 0 - 0.2 . . . . . . .invert -
flip lr - flip ud -

sample pairing 0.0 - 0.4 blur -
smooth -

Table 8: An overview of the augmentation spaces. The un-
marked operations are shared by all augmentation spaces
and make up the RA augmentation space. The UA augmen-
tation space additionally contains the dash underlined oper-
ations and the . . . . . .OHL augmentation space additionally con-
tains the dotted underlined operations. The ranges given
here are the ones used for AA and RA with a discretiza-
tion to thirty values. The UA augmentation space al-
lows translation up to 14 pixels, but inherits all other set-
tings from RA. The Wide augmentation space we use for
batch augmentation has the same operations as RA, but
uses the strength ranges in parantheses. The OHL aug-
mentation space uses different ranges and a discretization
to three values, see [14] for more details. All methods
are defined as part of Pillow (https://github.com/
python-pillow/Pillow), as part of ImageEnhance,
ImageOps or as image attribute, besides cutout [3]. We also
provide operations with the exact same names in our code.

B. Comparison of Different Methods on the
Same Augmentation Space

While in the above experiments we used the augmenta-
tion space corresponding to each method in the evaluations,
in this section, we probe the impact of these differences.
We follow the setup of section 4.1.2 and compare our re-
produced results of each method to TA on the exact same
augmentation space as in the paper introducing the respec-
tive method. Table 9 shows that TA's improvements gener-
alize across augmentation spaces and methods.

https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow


Dataset Setup AA FAA RA UA
CIFAR-10 Method 97.31 ± .22 97.43 ± .09 97.12 ± .14 97.46 ± .14

TA 97.55 ± .06 97.51 ± .09 97.46 ± .09 97.42 ± .07
CIFAR-100 Method 82.91 ± .41 83.27 ± .13 83.1 ± .32 83.08 ± .27

TA 83.34 ± .10 83.36 ± .15 83.54 ± .12 83.33 ± .14
SVHN Method 97.99 ± .06 - 98.06 ± .04 98.05 ± .04
Core TA 98.04 ± .02 97.84 ± .03 98.05 ± .02 98.06 ± .04

Table 9: Comparisons of various methods (in our reimplementation) to TA, using the exact same augmentation space. E.g.,
for CIFAR-10 on the AA space, AA reached 97.31 ± .22 and TA reached 97.55 ± .06. No policy is published for FAA on
SVHN Core, since this setup was not part of the FAA paper. Therefore, we do not reproduce FAA on SVHN Core.

C. Evaluation on Special Datasets

To further show that this method generalizes to more par-
ticular image classification datasets without fine-tuning, we
considered two more datasets, following the settings of Sec-
tion 4.1.2. (i) Since we are not aware of an image recogni-
tion dataset that contains occlusions, we created an occlu-
sion variant of CIFAR-10 (Occ. CIFAR-10), where a 14x14
square is occluded by a black box, in each image including
the test images; we evaluate a WRN-28-10 on Occ. CIFAR-
10. We follow the settings for CIFAR-10 closely for this
experiment. (ii) Additionally, we evaluate an RN-50 on the
Stanford Cars dataset, which is a dataset in which visual de-
tails are important to distinguish car models. We train for
1000 epochs. Table 10 shows that TA continues to perform
well in these settings, outperforming even brute-force tuned
RA.

Method Baseline Transfer-RA BF-RA TA (RA)
Occ. CIFAR-10 94.99 ± .11 95.2 ± .08 95.52 ± .18 95.72 ± .09
Stanford Cars 90.21 ± .16 92.47 ± .17 - 92.77 ± .12

Table 10: A comparison on non-standard datasets. The RA
setting of BruteForce-RA is searched in the same large set
as in Section 4.1.2. Transfer-RA is transferred from Wide-
ResNet-28-10 on CIFAR-10 and ResNet-50 on ImageNet,
respectively. BF-RA for S. Cars was not feasible in the
given time.

D. Evaluation on EfficientNet-B1

While we tried to evaluatate on as relevant setups as
possible, we also had to make sure that we can compare
with previous work for the main evaluation in Section 4.1.1.
Here, we add an Evaluation of an EfficientNet-B1 follow-
ing the ImageNet setup described in the original paper [18]
closely. None of the methods we compare to compares
on this task, thus we re-implemented UA and RA as base-
lines. For RA we performed a search over 3 settings for m,
namely 8, 14 and 21, and fixed the number of augmentations
n to 2 following the EfficientNet evaluations in [2].

RA UA TA (Wide)
EfficientNet-B1 78.75 ± .16 78.83 ± .23 78.99 ± .12

Table 11: The average performance of an EfficientNet-B1
across 5 re-runs on ImageNet with different augmentation
methods.

E. Approximation of the Compute Costs for
Different Methods

In this section, we discuss the data underlying our perfor-
mance per compute comparison. To fairly compare meth-
ods, we do not rely on published GPU times as much as
possible, but instead calculate all costs for a RTX 2080 Ti
for which we know many training times. Therefore, we can
only compare methods for which we ran the models. That
means for CIFAR-100 we consider only, the consider the
Wide-ResNets as well as Shake-Shake-26-2x96d.

Our estimates for the cost of one epoch on the full
CIFAR-10 dataset with 50,000 examples for each model:

• Wide-ResNet-28-2: 16s

• Wide-ResNet-40-2: 40s

• Wide-ResNet-28-10: 101s

• Shake-Shake-26-2x96d: 83s

AA In the AA paper [1] the policy is trained over 15’000
evaluations of a Wide-ResNet-40-2 on 120 epochs of 4000
examples from CIFAR-10 for all models. We therefore
estimate the search cost of AA as 15000 · 4000/50000 ·
120 · 40s = 1600h. Additionally we add the standard time
for 200 epochs of standard training for each mode. Wide-
ResNet-40-2: 1600h+ 40s · 200/60/60, Wide-ResNet-28-
10: 1600h + 101s · 200/60/60, Shake96: 1600h + 83s ·
1800/60/60.

Fast AA For Fast AA [13], we estimate, based on the
GPU times in the paper that the search costs more than one



full training. We therefore estimate the compute cost as one
training.

UA and TA No search costs. Therefore the total cost
simply is the cost of a single training. This is #epochs ·
costperepoch.

Adv. AA and TA x8 We assume for both setups no costs,
even though this of course is only a lower bound on the
compute requirements of Adv. AA. We simply multiply the
number of epochs with the cost per epoch and 8, the number
of workers.

RA The authors of RA use a search space of 5 settings
each is evaluated on 90% of the full dataset with the same
number of epochs and model. So we have a factor of 5·9/10
with which we multiply the standard costs to get the search
costs.

OHL OHL uses 300 epochs for the Wide-ResNets and
trains with 8 parallel workers. We therefore have a factor
of 8 · 300/200 compared to standard costs for search and
training combined.

AWS For AWS the data is not completely clear. First, we
have an earlier version of the paper that says it evaluates
800 policies, but in a later version this was corrected down
to 500. We therefore assume only 500 policy evaluations
to be conservative. They used a Wide-ResNet-28-10 for
the augmentation search CIFAR-100 experiments. During
augmentation search they train on 80% of the training set
for 200 epochs first, and then for 10 epochs for each policy
evaluation. This yields 0.8 · (200 + 500 · 10) · 101 = 117h.

For AWS's x8 setting (8-times augmented batches), we
assume the same search costs as above and 8-times the train-
ing costs.

F. Recommendations for the Application of
Automatic Augmentation Methods

Based on our intense study of automatic augmentation
methods for different image classification tasks using dif-
ferent models we recommend the following steps when ap-
plying automatic augmentation methods. In the application
of an automatic augmentation method it is of course impor-
tant to know, whether a method is easy to reimplement. We
thus put together Table 12 for easy guidance.

Standard Model and Dataset If the model and dataset
combination you are using is part of automatic augmenta-
tion literature, we recommend to simply use the best pub-
lished method for your setup with published code and poli-
cies.

Novel model or Novel dataset If you are using a setup
not evaluated in the automatic augmentation literature, it
is a good approach to try both the best performing model
on a similar task as well as a parameter-free baseline.
The parameter-free baseline, like UniformAugment or Triv-
ialAugment, especially can be expected to generalize to the
new task, since they generalized to all standard automatic
evluation benchmarks without any tuning. If you have tun-
ing budget, you can of course tune something like PBA
to your particular task. This likely is a good idea if your
images are very dissimilar to the automatic augmentation
benchmarks.



Method Policies for Training Code for training Code for meta-training
Cheap Search
TA ✓ ✓ -
UA ✓ ✗ -
Fast AA ✓p ✓ ✓

Expensive Search (> 2×)
RA ✓ ✗ ✗

Adv. AA ✗ ✗ ✗

OHL ✗ ✗ ✗p

Very Expensive Search (> 10×)
PBA ✓s ✓i ✓i

AWS ✗ ✗ ✗p

AA ✓ ✓i ✗

Table 12: In this table we compare the reproducibility of different methods in three categories. (i) Whether the augmentation
policies used for model trainings are available, (ii) whether the authors provide code for training a model with the policies on
which they report their performance and (iii) whether there is code available to run the search for training policies, code for a
meta-training. We mark entries with - if it is not an applicable category for the given augmentation method and additionally
use the following symbols. ✓s: Only available for subset of experiments, ✓i: Not available for ImageNet trainings, which
for PBA was also not considered in the paper, ✗p: there is publicly work in progress.


