
Supplementary Material for
Zero-Shot Natural Language Video Localization

1. Temporal Event Proposal
1.1. Details of Temporal Event Proposal

Atomic Event Discovery. To discover the atomic events from a video, we first extract frame-wise 3D CNN features of
each video of Charades-STA and ActivityNet-Captions datasets by pre-trained I3D [5] and C3D models [46], respectively.
We then uniformly sample 128 features from the frame-wise feature sequence to normalize the length of the video. With
the 128 features, we build a similarity matrix with cosine similarity between each features of the video frames. As shown
in the example similarity matrix in Fig.3-(a) of the main paper, clusters of events are clearly visible as diagonal squares on
the similarity matrix. We then define each column vector of the similarity matrix concatenated with the frame index (a scalar
value) as a contextual feature for each frame (L319 of main paper). The concatenated frame index is to encourage the cluster
more temporally nearby. We cluster the contextual features using k-means algorithm to render the final atomic events. As a
post-processing, we merge any clusters that has length shorter than 11 frames to its neighbor to remove too short clusters.

Composite Events. Once we have the atomic events, we generate composite events by populating all combinations of
consecutive events, then sampling a few following a uniform distribution. We further investigate other choices of compositing
the events (than the uniform sampling) in Sec. 1.3 (also some discussion in L327-L332 in the main paper). The procedure for
temporal event proposal are illustrated in Fig.3-(a) of the main paper.

1.2. Hyper-parameter k for Atomic Event Clustering

We empirically choose the hyper-parameter k to be 5 among {3, 5, 7} as summarized the results in Table. 1. When k = 3,
we observe performance drops in all thresholds. We believe that small value of k makes the clustering overly merged so that
the predicted regions are longer than expected. When k = 7, the performance marginally drops as most of clusters that can
be resulted by k = 5 are similar to the ones by k = 7 but a number of overly fragmented atomic events are also proposed by
the larger k that leads to learning the model with less precise regions.

k value R@0.3 R@0.5 R@0.7 mIoU

3 45.12 27.45 13.21 30.16
5 46.40 30.51 14.74 30.79
7 45.71 29.53 13.29 30.31

Table 1: NLVL performance for various k values of k-
means clustering
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Figure 1: Change of the number of clusters and NLVL perfor-
mance according to the hyper-parameter k values in Charades-
STA dataset [19]. The red curve shows the number of clusters (left
Y axis), and the bars represent the NLVL performance correspond-
ing to the k values (right Y axis).

1.3. Scoring Functions for Composite Events

Since it is favorable to learn an NLVL model with regions with various semantics for better generalization, we consider
three scoring functions in combining consecutive atomic events; atomic event’s compactness, its diversity, and uniform ran-
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dom sampling. We summarize the NLVL accuracy by different scoring functions (followed by the pseudo-query generation
process) in Table 3 (bottom).

For both ‘Compactness’ and ‘Diversity’ methods, we compute the ‘compactness’ score of the proposed event regions and
use it differently to compositing the atomic events. To compute the score, we average the difference between mean feature
of the proposed event region and each feature in the event region. For the method of ‘Compactness’ in Table 3 (bottom), we
choose the top-k event regions sorted by the highest compactness score. In contrast, for the ‘Diversity’ method, we chooses
bottom-k event regions for high variety of the clusters. The ‘Uniform sampling’ method refers to our random sampling from
the combinations of the consecutive atomic events.

Interestingly, the uniform random sampling performs the best. We believe that it contains both compact and diverse
combinations of events thus leads to better coverage of training distribution that leads to better generalization.

1.4. Details about Temporal Event Proposal Baselines

In Table 3 (top), ‘Random’ is obtained by our NLVL model trained with randomly selected event regions followed by
our pseudo-query generation method. The ‘Sliding window’ is obtained by a model trained with the windows obtained by
1) splitting videos into four equal length segments and 2) randomly choosing a combination from a set of combinations
of consecutive segments [33]. Our method is the most similar to the sliding window except that we use atomic events to
combine. The ‘ActionBytes’ is obtained by a model trained on temporal event proposals by [24]. They obtain the events by
measuring the difference of each adjacent frame-wise 3D CNN features of the video, assuming that frame-wise CNN feature
of a video changes abruptly at the event boundaries.

2. Pseudo-Query Generation
2.1. VerbBERT

To learn a model to predict the verbs, we fine-tune the pre-trained RoBERTa [34] model with the given language corpora
to infer verbs with contextual nouns. We call it as VerbBERT. We briefly illustrate the training procedure of the VerbBERT
in Fig. 2.
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Figure 2: Illustrative overview of the training procedure for VerbBERT.

Data Collection, Preparation and Fine-Tuning. In order to fine-tune RoBERTa [34] to be the VerbBERT, we collect the
sentences that contains ‘person’ from the given Flickr-description corpus [15]. Despite its small size, we use the ’Flickr’
dataset because it is a corpus that describes person’s action, which is characteristics for the benchmarks we used (e.g.
Charades-STA, Activity-Net). We prepare training samples for VerbBERT by 1) tokenizing and POS-tagging the sentences
using [22], 2) removing the words other than verbs and nouns, and 3) masking the verbs. For example, a sentence “person is
playing with the switch for the light.” would be “person [MASK] switch light” with the predicting verb of ‘play.’

Using the prepared data, we fine tune the RoBERTa by masking the verbs, which is the task of masked language model
(MLM). For the training details, we use Adam [3] with β1 = 0.9, β2 = 0.999, ε = 1× 10−6 and learning rate of 10−6 same
as [34].

Inference. We use the following sentence template to predict the verb; “Person [MASK] [OBJECTS].” Here, the first
word, “Person” provides context information for the ‘human action’ as most of the verbs are associated with person in many
benchmark datasets [19,26]. But this heuristic can be changed to any other words when we address other domains. With this
template, the model is expected to predict the verb with surrounding nouns.



In addition, the model is expected to predict the masked word that always positions in front of the object nouns. Since
there may exist multiple probable verbs depending on various object combinations, we shuffle the position of object nouns in
different permutations to predict verbs in different locations in a sentence.

2.2. Number of Nouns and Verbs in the Pseudo-Query

Different numbers of objects and verbs in the generated pseudo-query leads to a trade-off between the precision and recall
of the pseudo-queries towards meaningful queries (e.g., gold queries in the supervised data). If the number of words is large, it
is likely to have correct signals (high recall), but it may have too much noisy signals from the incorrect words (low precision).
In contrast, if we sample a small number of words, it is less likely to have correct signals (low recall), but if the verb is correct
the information is not noisy (high precision).

To investigate the trade-off between quantity and quality of words in the pseudo-query, we vary the number of nouns and
verbs, and summarize the NLVL performance in Table 2. For our final model, we use five nouns and three verbs (also for
all other experiments). For the variations of number of nouns, we fix the number of verbs to be three. For the variations
of number of verbs, we fix the number of nouns to be five. Comparing the result of other baselines (‘{1,3,7} Nouns’ and
‘{1,5} Verbs’ of the table), we observe that it is important to find the proper number of nouns and actions (verbs) for the best
performance.

R@0.3 R@0.5 R@0.7 mIoU

1 Noun 39.91 18.05 6.60 25.61
3 Nouns 44.52 17.58 4.66 27.06
5 Nouns 46.47 31.29 14.17 31.24
7 Nouns 42.46 19.19 7.45 27.26

1 Verb 42.69 23.97 9.76 28.03
3 Verbs 46.47 31.29 14.17 31.24
5 Verbs 44.01 27.30 11.72 28.82

Ours (N:5,V:3) 46.47 31.29 14.17 31.24

Table 2: NLVL performance when various number of nouns and verbs used in the pseudo-query. ‘k Nouns’ and ‘m Verbs’ refer to
the k nouns and m verbs in the pseudo-query (simplified sentence). Note that our final model uses 5 nouns and 3 verbs as they performs
the best. For all ‘k Nouns’ entries, we use 3 verbs. For all ‘m Verbs’ entries, we use 5 nouns.

2.3. Details on Generated Noun Quality Analysis

Procedure for measuring noun overlaps. To compute matched word statistics, we utilize WordNet path distance after
stemming and lemmatization to address language variation in matching. Specifically, we consider the set of words that differ
less than 3 in WordNet path distance as a single word. With the threshold of ≤ 3, a popularly used value in NLP, e.g.,
(‘sneakers’, ‘shoe’)→(0.50), (‘person’,‘man’)→(0.33) are matched.

In our experiment, the number of nouns used in the original descriptions is 424 (α), and the number of the off-the-shelf
object detector class is 1,600 (β). By this method, 192 out of 424 nouns are matched (α ∩ β = 192), therefore the overlap
ratio (recall) is 45.28% ((α ∩ β)/α=45.28%). Note that the overlap between the original nouns and object detector class
(45.28%) is larger than the average overlap between ground truth nouns and detected nouns for each nouns (36.54%). One
reason for latter being lower than former is the domain gap between the dataset that the off-the-shelf object detector is trained
on and the target dataset.

NLVL performance as a function of the noun overlaps. We also measure the NLVL performance as a function of the
number of overlapping objects between detected objects and original descriptions. Specifically, we measure NLVL perfor-
mance by reducing the overlap ratio between detected nouns and nouns in each original sentence by removing the matched
nouns. As the overlap decreases (36.54% → 27.48% → 17.97% → 9.64% → 1.15%), the NLVL’s ‘R@0.5’ performance
also decreases (31.88 → 31.09 → 28.25 → 25.94 → 23.82). This result shows the importance of the overlapping between
detected nouns and original description’s nouns. One should also note that for this experiment, we use the provided temporal
region in the original supervision as it is the temporal region for the provided sentences. Thus, the ‘R@0.5’ result (31.88) is
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Figure 3: Matching accuracy of the ground truth query words (noun or verb) and the pseudo-query words. (left) Verb matching accuracy
and (right) Noun matching accuracy. Note that verb is much more difficult to infer than the nouns.

marginally different from the one (31.29) in Table 2 in the main paper as we use the regions by the proposed ‘temporal event
proposal’ there.

2.4. Quality of Pseudo Query

Furthermore, We analyze the quality of our pseudo-queries by calculating the matching accuracy between the ground truth
query words and pseudo-query words generated in the ground truth temporal region as summarized in Fig. 3.

Verb matching accuracy is noticeably lower than the noun matching accuracy. It is expected as the objects are detected
directly from the video but verbs are inferred with the objects from a text corpus. When we used top-5 objects and top-3 verbs,
the matching accuracy are 60.74% and 3.58% for nouns and verbs, respectively. It implies that there is much to explore in
this avenue.

3. Details of the Simple NLVL Model

Contextual Feature Encoding Multi-modal Cross Attention Encoding Temporal Attentive Regression

Words-aware
Video 

Attention

Video-aware
Words

Attention

Multi-
modal
cross

Attention

Video

B
i-L

ST
M

B
i-L

ST
M

3D
-C

N
N

N
L-

B
lo

ck

M
ul

ti-
La

ye
r

Pe
rc

ep
tr

on

{ts, te}

M
ul

ti-
La

ye
r

Pe
rc

ep
tr

on
S

V

Vctx

KS

VS

VV
KV

Sctx

QS

QV

KAS

VAS

QAV

M o v

Simplified sentence

personpour

water
glass

<verb>  <noun>

Text
Corpora

Object
Detector

ASV

Prediction

AV

AS

Figure 4: Detailed architecture of the proposed simple NLVL model. It encodes the simplified sentence and the proposed temporal event
regions with cross modal attentions.

3.1. Architecture

We illustrate the NLVL model architecture in Fig. 4. The model is composed of three parts; contextual feature encoding,
multi-modal cross attention and temporal attentive regression. Compared to the previous state-of-the-art models [39,44] for
stronger supervision, our model highlights less on the sentence structures but focuses more on word-frame attention (L467-
L471 of the main paper).

3.1.1 Contextual Feature Encoding

Simplified Sentence Query Encoding. The goal of simplified sentence query encoding is to produce a sentence feature
with relational encoding. The input simplified sentence S with L words, is given as a sequence of words, expressed as



S = [w1, · · · , wL] ∈ RL×dw , where dw is dimension of the word embedding vector. A bi-directional LSTM with a hidden
state sized dhq and a fully connected layer with the parameter WS is applied to the input to obtain the sentence feature with
relational encoding, Sctx, as:

Sctx = ReLU(Bi-LSTM(S)WS), (1)

where WS ∈ R2dhq×d is a learnable parameter and dhq is dimension of the hidden state feature of the LSTM.

Video Encoding. Given the extracted video features from an individual video segment using 3D CNN [5,46], denoted by
V = [v1, v2, · · · , vT ] ∈ RT×dv , where dv is dimension of the video frame embedding vector (we use I3D [5] and C3D [46]
as the 3D CNN for Charades-STA and ActivityNet-Captions, respectively), we apply bi-directional LSTM with hidden state
size dhv and a fully connected layer with parameter WV as follows:

Vctx = ReLU((V||Bi-LSTM(V))WV), (2)

where Vctx ∈ RT×d is the context encoded video feature and WV ∈ R(2dhv+dv)×d is a learnable parameter, where dhv is
dimension of the hidden state feature of the LSTM.

3.1.2 Multi-modal Cross Attention

The multi-modal cross attention module produces an attended feature ASV on the two different modalities; Sctx and Vctx.
We utilize the attention mechanism proposed in [5] to learn the cross modal attended feature as follows:

Attention(Q,K, V ) = S
(
QKT

√
dk

)
V, (3)

where Q,K and V are a query vector, a key vector and a value vector, respectively. The function S denotes a softmax.
Following [4], we use three multi-modal co-attention layers to obtain a combination of multi-modal features of word-

aware video attention (WVA), video-aware word attention (VWA) and multi-modal cross attention (MCA). We first learn the
word-aware video attention (WVA) AV ∈ RT×d and video-aware word attention (VWA) AS ∈ RL×d from Vctx and Sctx

as:

AV = Attention(Vctx,Sctx,Sctx),

AS = Attention(Sctx,Vctx,Vctx).
(4)

Then, we fuse AV and AS by a cross attention module to obtain a multi-modal cross attention (MCA) ASV ∈ RT×d of
the video and query sentence as:

ASV = Attention(AV,AS,AS) (5)

In addition to the three attentions, we further apply the non-local block (NL-Block) [52] to encode the global information
over ASV. The NL-Block is popularly used for encoding global information over a feature [1][39]. We apply NL-Block to
obtain M ∈ RT×d from ASV as:

M = NL-Block(ASV)

= ASV + S
(
(ASVWnq)(ASVWnk)

T

√
d

)
(ASVWnv).

(6)

3.1.3 Temporally Attentive Regression

Once we obtain the cross-modal attended feature of video and query sentence, we finally learn the starting point and ending
point of the event. Following [39], we learn weights Wta1 ∈ Rd×d and Wta2 ∈ Rd in a multi layer perceptron (MLP) for
the temporal attention o ∈ RT on M to regress the regions as follows:

o = S(tanh(MWta1)Wta2),

v =

T∑
t=1

otMt.
(7)



where v is an temporally attended feature from M.
From the attended feature v, we finally obtain the temporal boundaries of event as:

{ts, te} = ReLU(vWtr1)Wtr2, (8)

where Wtr1 ∈ Rd×d and Wtr2 ∈ Rd×2 are learned for final boundary prediction.

3.2. Objective Function

For Lreg in Eq.1 of the main paper, following [6], we use the Huber loss function [2] between the predicted timestamp
{t̂s, t̂e} and ground-truth timestamp {ts, te} as:

Lreg = Huber(t̂s − ts) + Huber(t̂e − te). (9)

For Lguide in Eq.1 of the main paper, we use a temporal attention guidance loss proposed in [39,44] as:

Lguide = −
∑T

i=1 1{tstart ≤i ≤tend}log(oi)∑T
i=1 1{tstart ≤i ≤tend}

, (10)

where 1(·) is indicator function and set to 1 if the time segment is in the ground-truth region and otherwise 0, and oi is
temporal attentive weight for each temporal segment. This loss encourages the model to attend on the temporally segmented
regions within the target.

4. Datasets and Setups
Charades-STA. It is built upon an action recognition dataset, Charades [19] by adding temporal event annotations and
corresponding natural language descriptions. There are 6,672 videos and each are 30 seconds long on average. The videos
are split into 5,338 and 1,334 videos for training and test sets, respectively. It has total 16,128 video-query pairs, with 12,408
for training split and 3,720 for test split. The descriptions are 6.21 words on average.

ActivityNet-Captions. As a subset of ActivityNet challenge dataset [26], ActivityNet-Captions is originally designed to
evaluate dense video captioning methods. The dataset consists of 20,000 YouTube videos with an average length of 120
seconds. It is split into 10,024 training videos, 4,926 validation videos, and 5,044 test videos. The number of annotations
are 37,421 and 34,536 for training and validation split, respectively. The annotations for the test split are privately kept
for evaluations. The descriptions are composed of 13.48 words on average. Following the prior arts [39,44], we report the
performance on the combined two validation sets of val 1 and val 2.

5. More Qualitative Results
Fig. 5 shows more qualitative results by our model when the prediction is correct. We observe that the ground truth

temporal segments, our predicted temporal segments, and the temporal attention weights are well aligned. This indicates that
our model successfully attends to the temporal region that is related to the event, and correctly predicts the event regions
using the attended features. Also, the attention weights on the words are generally higher in verbs such as “eat”, “sit” and
“open.” This implies that the verbs are more important than nouns for describing an event.

Fig. 6 shows more qualitative results when the prediction is incorrect. Even in the incorrect predictions, a fairly good
amount of model outputs were similar to what is shown in Fig. 6-(a), i.e., the predicted temporal attention includes ground
truth event region as its sub-event. In these examples, our method is able to roughly locate the event, but fails to snap at the
exact event region. On the other hand, Fig. 6-(c) shows an example that our model completely fails to predict the regions as
it attends to the completely wrong temporal segments. In most of failed cases, our models output overlaps a small portion of
the correct temporal segment as shown in Fig. 6-(b).
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Figure 5: Qualitative results when PSVL predicts correctly. All of the ground truth temporal segments, our predicted temporal segments
and the temporal attention weights are aligned well.
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Figure 6: Qualitative results when PSVL predicts incorrectly. (a) Our prediction is a super-set of the ground truth temporal region. (b)
The temporal attention intersects with ground truth temporal region. (c) both prediction and temporal attention is wrong.
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