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1. Shock Graph Computational Algorithm

Formally, the computation of shocks from an unorga-
nized set of curve fragments relies on two key ideas. First,
since the shocks arising from points and lines can be an-
alytically computed, the curve fragments can be first ap-
proximated by a polyline, namely, a set of line segments
that share end points; there are well-known algorithms to
achieve this by specifying the expected error [1]. It is well-
known that the bisector of two points is a line, the bisector
of two lines is a line, and the bisector of a point and a line
is a parabola, Figure 1. The dynamics of shocks moving
on this bisector are less trivial but they can also be calcu-
lated analytically. The geometry and dynamics of shocks
arising from any isolated pair from a collection of point and
line sources is therefore readily available in analytic form
and this saves in computation time and provides numerical
stability robustness.

The second key idea is the use of a wave propagation and
shock propagation to piece together shocks from multiple
pairs of sources in a highly efficient way. Observe that the
union of all shock-graph of isolated pairs of sources is a su-
perset of the shock graph of the union of boundary sources,
e.g., as in the bisectors shown in grey and green which is a
superset of the shock graph shown in green in Figure 2(h).
Consider first the shock points on a bisector of a pair of
boundary sources: a shock point is valid if no other waves
from sources other than its own sources reach there. In other
words, a shock is valid if its time of formation (distance to
its sources) is earlier than the time of propagation (distance)
to any earlier other source. Since the shock path on any bi-
sector has an initial shock point (shock source), the extent
of the valid shock path can be determined by first exam-
ining the validity of the shock source itself, the first shock
point to form in time. Since a valid shock path can only
be potentially terminated at the intersection of two shock
paths, these are the only points that need to be examined.
This is a key distinction since it discretizes the continuous
propagation into a discrete propagation. Thus, the algorithm

a)
O

P

τ
RτL

u
L OR

b)

N2L

N2R

c)

u

Figure 1. Analytic computation of shocks from polylines requires
shocks from (a) point-point (b) line-line and (c) point-line pairs.
Boundary sources are shown in red, shocks are shown in green,
and the rays connecting boundary sources to respective shocks are
shown in dashed lines. These computations assume only a pair of
sources with no interaction from other sources so all shocks go off
to infinity.

first computes all shock sources, an N2 computation for N
boundary sources, and considers shock paths for the sources
in order of time.

Figure 2 illustrates this process. Consider two fragments,
C1 and C2 whose potential shock path is shown in cyan
in (a). For the purpose of illustrating the second key idea,
namely using propagation to compute the shock graph, the
contour fragments are not restricted to be polylines and can
take any form. Also, these are sketches and not accurate
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Figure 2. This figure illustrates the incremental steps of shock computation for a set of red input curves. At each step infinite length cyan
bisector curves between a new boundary element and each of the previous boundary elements are computed. The finite true bisectors after
the limiting process are shown in green with the removed shock branches shown in gray. The green shock links represent the valid portion
of bisector curves.

in scale. Since there are no other interacting shock paths,
the entire shock path is validated and shown in green. Next,
suppose that a third contour fragment C3 is added to the
pool of curve fragments. The interaction of the new-comer
C3 with C1 and C2 generates two potential shock paths
shown in cyan in (c). The intersection of these shock paths
with existing shock paths create shock junctions, which are
the only potential terminators of a shock path. In this par-
ticular case there is only one shock junction, with each of
the three shock paths flowing into the shock junction. Since
the continuation of each shock path has a time exceeding
the time of the waves reaching there from another source,
all three shock paths are terminated, as shown in (d). In
other cases it can happen that two shock branches flow into
a junction and one shock branch flows out. In this case
the two branches flowing into the junction are terminated
in which the shock branch flowing out only begins at the
junction as its source. It can also happen that the entire
shock path is invalid, say if the two sources on the opposite
sides of an image with many sources in between. Consider
now N boundary sources. The process of shock computa-
tion can be implemented by first computing the shock path
for a pair of boundary sources, and then considering a third,
a fourth, etc. , Figure 2. While this can be done in any or-
der, the most efficient order is one that considers the earliest
forming shocks first.

The practical implementation of these two ideas is re-
alized through the construction and visitation of two time-
ordered lists. The first list contains the candidate sources

that are initially pre-computed and has size N2 and is a su-
perset of all possible source nodes in the shock-graph. The
second list is the active shock list, the list of shocks un-
der propagation, and is initially empty. The algorithm pro-
ceeds by visiting the first element in the candidate source
list and initializing a pair of child shocks (outgoing flow)
where each child has a start time equivalent to the time of
formation of the source node and an end time initially at
infinity. This initial pair of shocks are inserted into the ac-
tive elements list, and the source node is removed from the
candidate list. Each active shock is then propagated to the
nearest junction on it, thus forming a valid shock link of the
shock graph, with a specific start and a specific end-time,
and this active shock is now removed from the list. The
process is iterated by visiting the next active shock in the
list. As the algorithm alternates between visiting the two
lists it prioritizes visiting active shock elements first over
candidate sources. If there are no more active shocks the
algorithm will visit the next element in the candidate source
list, initialize a new pair of child shocks, and subsequently
propagate those active shocks to determine junctions with
the existing shocks. This process will terminate when both
lists are empty. As candidate sources are visited the algo-
rithm determines which sources are valid or invalid given
the current state of the simulation, before initializing a new
pair of child shocks. It is formally shown in [6] that the
number of discarded candidate sources in the second stage
(propagation of shocks) leads to a logarithmic dependency
on the number of contours, N , resulting in an overall run-



time of N2log(N). Note that during this process, shocks,
shock nodes, and shock links are augmented with contin-
uous attributes such as its intrinsic geometry (time of for-
mation, length, curvature, etc.) and also labeled with dis-
crete attributes signifying the node type, namely, source,
sink, or junction and link type, namely, degenerate, semi-
degenerate, or degenerate [3].

Finally, there are two practical considerations in utilizing
the shock computation algorithm of [6]. First, many shock
paths extend infinitely beyond the image borders. The addi-
tion of a bounding box to the initial set of contour fragments
contains the shock paths to a finite, well-defined area. In
practice, this bounding box is twice the size of the image,
Figure 3. Second, the approximation of each contour frag-
ment as a polyline generates numerous artifactual shocks at
the points of convex discontinuity. The regularization al-
gorithm in [6] recovers the “true” shock graph, Figure 3,
i.e., the shock graph of the contour before the polyline ap-
proximation, by scoring and removing shock links accord-
ing to some user-defined threshold. The saliency computed
for each shock link measures the amount of deformation of
the boundary that is needed for the link to be removed. It is
closely related to the “splice cost” in [5]. In all subsequent
figures, unless otherwise noted, the shock computation is
depicted with a bounding box twice the size of the image
and with λ = 1.0 regularization.
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Figure 3. a) The set of red contours and its corresponding shock
graph in green. b) If we augment the contour set with a magenta
bounding box and apply regularization (λ = 1.0) we recover the
shock graph corresponding to the initial contour, before the poly-
line approximation.

2. Construction of ColoredMNIST
The ColoredMNIST [2, 4] is constructed as follows:

First, take the MNIST dataset and label each image with
a 0 if it corresponds to a digit less than 5, and a 1 if it cor-
responds to a digit greater than 5. Flip these labels with
probability 0.25. This ensures that there is “at most” a cor-
relation of 0.75 between the shape of the digit and the actual
label. Now we introduce color. If the label is 0, color it red,
otherwise color it green. With probability ρ, flip the color
of the image. This ensures that there is a 1 − ρ correlation
between the color of the image and the true label. We use
different values of ρ to create different domains, and explore

how well models trained on multiple domains generalize to
the others. Following [2], we use ρ = 0.1, 0.2, and 0.9 for
our three domains. Note that by construction, color is more
highly correlated with the label than shape.
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