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1. Additional Implementation Details
Content Encoder: In the original SPADE architecture,

the raw content representation is projected to an embed-
ding space and then convolved to produce the modulation
parameters [2]. Sensorium introduces a Content Encoder
which builds a pyramid of features maps that replace the
downsampled raw content representation. Each feature map
emitted from the Content Encoder has channel dimension of
128, which is chosen to match the channel dimension of the
embedding space in [2]. The Content Encoder does not emit
feature maps for resolutions 64, 128, and 256 as the feature
maps at these resolutions will come from Style/Content Fu-
sion modules. See Figure 1 for further details.

Style Encoder: The Style Encoder is domain specific
and largely follows the encoder design from [1]. See Figure
2 for further details.

Style/Content Fusion: The original SPADE architec-
ture only incorporates style information once at the base of
the generator. To allow for greater style control we local-
ize the global style information by fusing the style repre-
sentation with the highest resolution content representation,
c̄a

(32) [2]. See Figure 3 for further details.
Generator: We have a single generator for all domains

which learns to synthesize an image given a pyramid of spa-
tial varying feature maps containing all style and content in-
formation. Each incoming feature map has channel dimen-
sion of 128, which matches the dimension of the embedding
space in the original SPADE modules [2]. See Figure 4 for
further details.
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Figure 1: The Content Encoder model is shared across all
domains and consists of a series of residual blocks and max
pooling layers. The number of channels is a factor of d
which varies based on the choice of conditioning. At each
residual block, we cap the channel dimension at 512. As-
suming a 256x256 input image, the feature maps of resolu-
tion 32, 16, and 8 are each passed through a convolutional
layer and then emitted to form the hiearchical content rep-
resentation c̄a = {c̄a(r) | r ∈ {8, 16, 32}}. The term 1x1-
Conv-128 denotes a 1-by-1 convolution with 128 convolu-
tional filters.
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Figure 2: The Style Encoder model is domain-specific and
applies a series of residual blocks and average pooling lay-
ers until the image resolution is reduced to 4x4 upon which
another convolution fully reduces the spatial dimension and
we apply one final linear layer.
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Figure 3: The Style/Content Fusion module is a simple way
to combine the spatially varying content feature maps from
c̄a with the global representation of style from s̄a. Regard-
less of the current spatial dimension, r, the Style/Content
Fusion model spatially replicates the global style s̄a with
c̄a

(32), concatenates, upsamples to the desired resolution
and then applies a series of convolutions.
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Figure 4: The Generator begins from a learned constant and
applies a series of SPADE residual blocks. While in the
original SPADE generator the scale and bias parameters are
functions of the raw conditioning, in Sensorium the input
to the SPADE layers is some feature map from the Content
Encoder or a Content/Fusion module. At low resolutions
the SPADE scale and bias parameters are functions of the
content representation, c̄a, while at higher resolutions they
are functions of a fused content/style representation. We
add output skip connections, denoted by ToRGB, which is
simply a 1-by-1 convolution with 3 feature maps and an up-
sampling to allow for element-wise addition with the next
skip connection.



Figure 5: Additional examples of Sensorium’s output for FFHQ-Wild translations. Sensorium performs three synthesis tasks:
reconstruction (along the diagonal); within domain style transfer (in the main diagonal blocks); and domain translation (be-
tween gender in the off-diagonal blocks). Further, image quality is robust to changes in facial pose, geometric transformations
of hair, and changes in camera zoom. Finally we note that Sensorium gracefully handles additional faces in the frame.
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Figure 6: We show how different choices of conditioning allow for control in the synthesized image. When translating
between human face styles the exact content representation is shaped by the user’s preferences.



Figure 7: Sensorium is a general purpose image translation network which can synthesize a variety of image tasks despite
its simple training objective. Here we illustrate performance on the Seasonal change problem, translating between Spring,
Autumn, and Winter.



Figure 8: Under our Sensorium approach, the user fixes a content representation via the choice of derived conditioning, and
all other features become encoded as style. Here, when translating from FFHQ-Wild to ClassicTV-Bonanza we fix the content
representation as KeyPoints. Therefore, the synthesized images pull all else from the style reference images, including hats,
clothing, and hair.
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