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This supplementary material provides the proofs for the
Theorems and Lemmas presented in the paper. It also gives
more details on the datasets and experimental protocols
used in our experiments. We refer the interested reader
to [69, 70] for an introduction to the theory of Lie groups
and Riemannian symmetric spaces. Please also see the pa-
per for references.

1. Proof of Lemma 1
Proof. We apply the tricks in [34]. Let Rn×m be the set of
n×m matrices. The following notations will be used in the
material:

GL(n) = {A ∈ Rn×n|det(A) 6= 0},
GL+(n) = {A ∈ GL(n)|det(A) > 0},
SL(n) = {A ∈ GL(n)|det(A) = 1},
O(n) = {A ∈ GL(n)|AT = A−1},

SO(n) = {A ∈ O(n)|det(A) = 1}.

(35)

Denote by Aff(n) the affine group of Rn which is the
semidirect product:

Aff(n) = Rn oGL(n), (36)

where the semidirect product is defined as
(A1,b1).(A2,b2) = (A1A2,b1 + A1b2) for
(Ai,bi) ∈ Aff(n), i = 1, 2.

Considering the action of affine groupAff(n) onN(n):

(A,b).(ΣΣΣ,µµµ) = (AΣΣΣAT ,Aµµµ+ b), (37)

where A ∈ GL(n), b ∈ Rn, and (ΣΣΣ,µµµ) ∈ N(n).
It is easy to show that this action is transitive. The pro-

jection of Aff(n) onto N(n) is:

π1 : Aff(n)→ N(n),

(A,b) 7→ (A,b).(In,0n×1) = (AAT ,b).
(38)

The stabilizer of the standard Gaussian is given by:

A0n×1 + b = 0n×1, and AInA
T = In. (39)

Therefore, the stabilizer of the standard Gaussian is
O(n) and we have: Aff(n)/O(n) ∼= N(n). Let Aff+(n)
be the semidirect product:

Aff+(n) = Rn oGL+(n). (40)

Then the action remains transitive when restricted to
Aff+(n). From (39) we deduce that AAT = In and
detA = 1. Therefore, the stabilizer of the standard Gaus-
sian is SO(n). Consequently, we get: Aff+(n)/SO(n) ∼=
N(n).

Now, we embed Aff+(n) into the Lie group SL(n+k)
as follows:

Aff+(n) ↪→ SL(n+ k),

(A,b) 7→ (detA)−
1

n+k

[
A b(k)

0k×n Ik

]
.

(41)

The group SL(n + k) acts on Sym+,1
n+k as follows: For

all U ∈ SL(n+ k) and all P ∈ Sym+,1
n+k:

U.P = UPUT . (42)

It is easily checked that UPUT ∈ Sym+,1
n+k if P ∈

Sym+,1
n+k. Since every P ∈ Sym+,1

n+k can be written as
P = UUT for some U ∈ SL(n + k), the action is transi-
tive. It is also easy to see that the stabilizer of the identity
element in Sym+,1

n+k is SO(n + k). Then we can conclude
that SL(n+ k)/SO(n+ k) ∼= Sym+,1

n+k. The projection of
SL(n+ k) onto Sym+,1

n+k is:

π2 : SL(n+ k)→ Sym+,1
n+k,

U 7→ UUT .
(43)

Combining with (41), the restriction of π2 to the sub-
group Aff+(n) is given by:

Aff+(n)→ Sym+,1
n+k,

(A,b) 7→ (detA)−
2

n+k

[
AAT + b(k)b(k)T b(k)

b(k)T Ik

]
.

(44)



This restriction is a surjective mapping with
π−12 (In+k) = SO(n). Note that we have the follow-
ing embedding:

SO(n) ↪→ SO(n+ k),

A 7→
[

A 0n×k
0k×n Ik

]
.

(45)

We can now conclude that N(n) can be identified with
the symmetric space Sym+,1

n+k
∼= SL(n + k)/SO(n + k).

Specifically, we have the following embedding:

ψ̄ : N(n)→ Sym+,1
n+k

(AAT ,b) 7→ (detA)−
2

n+k

[
AAT + b(k)b(k)T b(k)

b(k)T Ik

]
.

(46)

We can change the coordinates and obtain an embedding
of the Gaussian (ΣΣΣ,µµµ) ∈ N(n):

ψ : N(n)→ Sym+,1
n+k

(ΣΣΣ,µµµ) 7→ (detΣΣΣ)−
1

n+k

[
ΣΣΣ + kµµµµµµT µµµ(k)
µµµ(k)T Ik

]
.

(47)

2. Proof of Lemma 2
Proof. Let gl(n), sl(n), and aff(n) be the Lie algebras of
the Lie groups GL(n), SL(n), and Aff(n), respectively.
It has been known that:

gl(n) = {A|A ∈ Rn×n},
sl(n) = {A|A ∈ gl(n), T r(A) = 0},

aff(n) = {(A,b)|A ∈ gl(n),b ∈ Rn}.
(48)

Denote by TIn+k
Sym+,1

n+k the tangent space at the iden-
tity of Sym+,1

n+k, T(In,0n×1)N(n) the tangent space at the
identity of N(n). These spaces can be identified by Cartan
decomposition. We have the following proposition.

Proposition 1. TIn+k
Sym+,1

n+k is identified with:

{A|A ∈ gl(n+ k), T r(A) = 0,A = AT }. (49)

T(In,0n×1)N(n) is identified with:

{(A,b)|A ∈ gl(n),A = AT ,b ∈ Rn}. (50)

Proof. We will prove the first part of Proposition 1. The
proof of the second part can be done in the same way.
Based on Lemma 1, we know that Sym+,1

n+k
∼= SL(n +

k)/SO(n + k). An involution on SL(n + k) is given by:

σ(U) = (U−1)T . Then the Cartan involution is computed
as:

Θ(A) =
d

dt

∣∣∣∣
t=0

σ(exp(tA)) =
d

dt

∣∣∣∣
t=0

exp(−tAT ) = −AT .

(51)
Thus, sl(n+ k) decomposes as a vector space as sl(n+

k) = l ⊕ m where l and m are the eigenspaces of Θ for the
eigenvalues 1 and −1, respectively:

l = {A|A ∈ gl(n+ k), T r(A) = 0,Θ(A) = A}
= {A|A ∈ gl(n+ k), T r(A) = 0,A + AT = 0},

(52)

m = {A|A ∈ gl(n+ k), T r(A) = 0,Θ(A) = −A}
= {A|A ∈ gl(n+ k), T r(A) = 0,A = AT }.

(53)

Therefore, we can identify m with the tangent space
TIn+k

Sym+,1
n+k.

Proposition 2. The differential d(In,0n×1)ψ :

T(In,0n×1)N(n) → TIn+k
Sym+,1

n+k of ψ at (In,0n×1)
is given by:

(d(In,0n×1)ψ)(A,b) =

[
A− 1

n+kTr(A)In b(k)

b(k)T − 1
n+kTr(A)Ik

]
.

(54)

Proof. Let B = b(k), D = D1.D2 and D1,D2 are given
by :

D1 = det(In + tA)−
1

n+k , (55)

D2 =

[
In + tA + tBtBT tB

tBT Ik

]
. (56)

Note that dD
dt = dD1

dt D2 + D1
dD2

dt and the differential
dD1

dt is given by:

− 1

n+ k
det(In+tA)−

n+k+1
n+k det(In+tA)Tr((In+tA)−1A).

(57)
The differential dD2

dt is given by:[
A + 2tBBT B

BT 0k×k

]
. (58)

Hence, we obtain dD
dt

∣∣∣
t=0

as:

− 1

n+ k
Tr(A)

[
In 0n×k

0k×n Ik

]
+

[
A B
BT 0k×k

]
, (59)

which can be compactly written as:[
A− 1

n+kTr(A)In B

BT − 1
n+kTr(A)Ik

]
. (60)



We are now ready to prove Lemma 2. It has been known
that the natural SL(n+k)−invariant metric on Sym+,1

n+k is,
up to a positive multiple, given by the Killing form of the
Lie algebra sl(n+ k) = l⊕m, i.e.:

< U1,U2 >= Tr(U1U2), U1,U2 ∈ TIn+k
Sym+,1

n+k.
(61)

From Proposition 2, it follows that the symmetric metric
on T(In,0n×1)N(n) is given by:

< (A1,b1), (A2,b2) >=Tr(A1A2) + 2Tr(bT
1 b2)

− 1

n+ k
Tr(A1)Tr(A2).

(62)

Thus, we have:

< (A1,0n×1), (A2,0n×1) >=Tr(A1A2)

− 1

n+ k
Tr(A1)Tr(A2).

(63)

The metric at any point P is obtained by transport-
ing (63) by the action of the affine group:

< A1,A2 >P=Tr(A1P
−1A2P

−1)−

− 1

n+ k
Tr(A1P

−1)Tr(A2P
−1).

(64)

3. Proof of Lemma 3
Proof. The proof is based on [11, 61]. Let P,Q ∈ Sym+

n ,
A1,A2 ∈ TQSym

+
n . Denote by E = (PQ−1)

1
2 =

Q
1
2

(
Q−

1
2PQ−

1
2

) 1
2

Q−
1
2 . Note that P−1E is a symmet-

ric matrix since:

P−1E = P−1Q
1
2

(
Q−

1
2PQ−

1
2

) 1
2

Q−
1
2

= P−1Q
1
2Q−

1
2PQ−

1
2

(
Q−

1
2PQ−

1
2

)− 1
2

Q−
1
2

= Q−
1
2

(
Q−

1
2PQ−

1
2

)− 1
2

Q−
1
2

(65)

We then have:

ETP−1E = ETETP−1

= (PQ−1)TP−1

= (Q−1P)P−1

= Q−1.

(66)

By repeatedly applying the identity Tr(UV) =
Tr(VU) for any U,V ∈ Rn×n, we obtain:

Tr(A1Q
−1) = Tr(A1E

TP−1E)

= Tr(EA1E
TP−1)

(67)

Similarly, we have:

Tr(A2Q
−1) = Tr(A2E

TP−1E)

= Tr(EA2E
TP−1)

(68)

From (66), we also get:

Tr(A1Q
−1A2Q

−1) = Tr(A1E
TP−1EA2E

TP−1E)

= Tr(EA1E
TP−1EA2E

TP−1).

(69)

Combining (67), (68), and (69), we get the conclusion of
the Lemma:

< A1,A2 >Q=< EA1E
T ,EA2E

T >P (70)

4. Proof of Theorem 1
Proof. First, we prove that the group product ? is associa-
tive. Let (Pm

i ,P
c
i ) ∈ M(n, n′), i = 1, 2, 3 and Pc

i =
LiL

T
i , where Li is a lower triangular matrix with positive

diagonal entries. We note that:

((Pm
1 ,P

c
1) ? (Pm

2 ,P
c
2)) ? (Pm

3 ,P
c
3)

= (ϕ−1(ϕ(Pm
1 )(L2L3) + ϕ(Pm

2 )L3

+ ϕ(Pm
3 )), (L1L2L3)(L1L2L3)T )

= (Pm
1 ,P

c
1) ? ((Pm

2 ,P
c
2) ? (Pm

3 ,P
c
3)).

(71)

The neutral element is (In, In′) since:

(In, In′) ? (Pm,Pc) = (ϕ−1(ϕ(Pm)), (In′L)(In′L)T )

= (ϕ−1(ϕ(Pm)),LLT ) = (Pm,Pc),

(72)

where Pc = LLT .
Similarly, we have:

(Pm,Pc) ? (In, In′) = (ϕ−1(ϕ(Pm)In′), (LIn′)(LIn′)
T )

= (ϕ−1(ϕ(Pm)),LLT ) = (Pm,Pc).

(73)

Finally, the inverse of (Pm,Pc) is given by:

(Pm,Pc)−1 = (ϕ−1(−ϕ(Pm)L−1),L−1L−T ). (74)



This can be seen by:

(Pm,Pc) ? (ϕ−1(−ϕ(Pm)L−1),L−1L−T )

= (ϕ−1(ϕ(Pm)L−1 − ϕ(Pm)L−1), (LL−1)(LL−1)T )

= (In, In′).

(75)

The inverse of (Pm,Pc) is unique due to the uniqueness
of Cholesky decomposition of SPD matrices and the prop-
erty of mapping ϕ. Thus, M(n, n′) is a group. Further-
more, both the group product and the map that sends each
element to its inverse are smooth, showing thatM(n, n′) is
a Lie group.

5. Proof of Theorem 2

Proof. First, it is easy to see that K+(n′ + k′) forms a Lie
group since it is a closed subgroup of GL+(n′ + k′). Now
suppose that Pc

1 = L1L
T
1 , Pc

2 = L2L
T
2 where L1,L2 ∈

LT+(n′). Then we have:

KPm
1 ,Pc

1
KPm

2 ,Pc
2

=

[
L1L2 0n′×k′

ϕ(Pm
1 )L2 + ϕ(Pm

2 ) Ik′

]
= Kϕ−1(ϕ(Pm

1 )L2+ϕ(Pm
2 )),L1L2

.

(76)

Therefore:

φ(KPm
1 ,L1

KPm
2 ,L2

) = φ(Kϕ−1(ϕ(Pm
1 )L2+ϕ(Pm

2 )),L1L2
).

(77)

According to the definition of φ, the right-hand side
of (77) is given by:

(ϕ−1(ϕ(Pm
1 )L2 + ϕ(Pm

2 )), (L1L2)(L1L2)T ), (78)

which is equal to (Pm
1 ,P

c
1) ? (Pm

2 ,P
c
2) by the definition of

the group product ?. Thus, we have:

φ(KPm
1 ,L1APm

2 ,L2) = (Pm
1 ,P

c
1) ? (Pm

2 ,P
c
2). (79)

Since (Pm
1 ,P

c
1) = φ(KPm

1 ,L1) and (Pm
2 ,P

c
2) =

φ(KPm
2 ,L2), we get:

φ(KPm
1 ,L1

KPm
2 ,L2

) = φ(KPm
1 ,L1

) ? φ(KPm
2 ,L2

). (80)

We then conclude that mapping φ is a group homo-
morphism. Due to the uniqueness and smoothness of the
Cholesky decomposition, φ is smooth and bijective and the
inverse mapping φ−1 is smooth. Therefore, φ is a Lie group
isomorphism.

Sets
NTU RGB+D 60 (11 classes) NTU RGB+D 120 (26 classes)
X-Subject X-View X-Subject X-Setup

Train 7319 6889 13072 11864
Test 3028 3458 11660 12868

Table 1: The numbers of training and testing samples for
NTU RGB+D 60 and NTU RGB+D 120 datasets.

Dataset SBU
NTU-60 NTU-120

X-Subject X-View X-Subject X-Setup
SPDNetBN [4] 86.78 75.24 76.31 61.11 62.36
GeomNet 96.33 93.62 96.32 86.49 87.58

Table 2: Comparison between GeomNet and SPDNetBN.

6. More details on the datasets and experimen-
tal settings

Table 1 gives the numbers of training and testing sam-
ples for the experimental protocols on NTU RGB+D 60 and
NTU RGB+D 120 datasets. Note that we only used the
mutual actions for the experiments on these datasets. All
sequences of a dataset were interpolated to have the same
number of frames. The number of frames of a sequence
in NTU datasets and that of a sequence in SBU Interaction
dataset were set to 300 and 45, respectively.

Experimental protocols on NTU RGB+D 60 dataset.
For X-subject protocol, training data contains 20 subjects,
and testing data contains the other 20 subjects. For X-view
protocol, training data comes from the camera views 2 and
3, and testing data comes from the camera view 1.

Experimental protocols on NTU RGB+D 120 dataset.
For X-subject protocol, the 106 subjects are split into train-
ing and testing groups where each group contains 53 sub-
jects. For X-setup protocol, training data contains samples
with even setup IDs, and testing data contains samples with
odd setup IDs.

7. More results
Here we compare GeomNet and SPDNetBN [4] using

the code1 published by its authors. SPDNetBN improves
SPDNet by introducing a batch normalization layer be-
tween Bimap and ReEig layers. This layer is inspired from
the classical batch normalization layer in convolutional neu-
ral networks and is designed to respect the Riemannian ge-
ometry of SPD matrices. Similarly to SPDNet, SPDNetBN
only works with the first-order information on SPD mani-
folds. Results of GeomNet and SPDNetBN2 are given in
Table 2. For SBU dataset, SPDNetBN achieves the best

1https://proceedings.neurips.cc/paper/2019/
hash/6e69ebbfad976d4637bb4b39de261bf7-Abstract.
html

2The results are averaged over 3 runs using 500 epochs.



accuracy using our proposed embedding of Gaussians with
k = 1. For NTU datasets, SPDNetBN achieves the best ac-
curacy using only the covariance information. The results
again confirm the superiority of GeomNet over SPD neural
networks based only on the first-order information on SPD
manifolds.
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