
Supplementary Materials for
OSCAR-Net: Object-centric Scene Graph Attention for Image Attribution

1. Datasets

1.1. PSBattles24K construction

The original PSBattles dataset [4] contains 102,028 im-
ages grouped into 11,142 subsets where each subset has 1
original and several manipulated images. In total, 31,272
online amateur and professional artists contributed to make
the manipulated set, averaging 7.9 manipulated variants per
original image. In order to increase the challenge in this
dataset, we consider manipulated images that had the most
subtle changes or least visual differences from the origi-
nals. We did this by computing the distance of all original
and manipulated image pairs using a pre-trained ImageNet
ResNet50 model, and removed the pairs whose distance was
larger than a threshold τ (τ = 150, and selected the lower
quartile of image pairs, determined by manually inspecting
several value ranges). This left 25,046 original-manipulated
image pairs. There were several manipulated images that
were altered by insertion of imperceptible changes (e.g. in-
troduction of invisible watermarking), which we treated as
duplicates, and further removed using crowd-sourced image
comparison (via Amazon Mechanical Turk). The final PS-
Battles24K dataset has 24,157 image pairs, which is split
into a training and a test set of 21,197 and 2,960 pairs, re-
spectively. We also ensured the original images do not over-
lap between the train and test sets. Fig. 1 depicts the his-
togram of object occurrence in the PSBattles24K test set us-
ing an off-the-shelf object detection MaskRCNN model [3].
Several examples are shown in Fig. 2. For the PSBattles24K
benchmark and train/test split, please see our project page
at https://exnx.github.io/oscar.

1.2. Benign transformations

Details of the benign transformations used in this work
can be found in Tab. 1. The list of transformations used
during the training and test of PSBattles24K are: 2 pri-
mary transformations (jpeg compression, resize) and 6 sec-
ondary transformations (flip, rotation, padding, sharpness
enhancement, Gaussian noise and color saturation). The
PSBattles24K benign-transformation test set is formed from
random combinations of these transformations (c.f. sub-
sec.3.5). We aim to learn a fingerprinting model robust to

benign transformations at pre-defined parameter ranges (a
transformation, although benign, can become destructive if
the parameter that controls its severity is set beyond a cer-
tain level). It can be seen in Tab. 1 that the test parame-
ters are near-identical to the training parameters except its
range is shifted a bit so that the uniformly sampled values
are slightly different.

Six other transformations (shot noise, impulse noise,
speckle noise, Gaussian blur, defocus blur, pixelate) unseen
by the model during training are used for evaluating the
effects of individual transformations on performance (c.f.
subsec.4.4). The seen and unseen individual transforma-
tions constitute the PSBattles360K-S dataset. Fig. 3 illus-
trate the effect of each individual transformation on an ex-
ample image.

2. Losses
2.1. Hash loss analysis

As briefly described in subsec.3.4 in our main submis-
sion, we deliver true binary embedding during the training
via:

u = sign(z) ∈ {−1, 1}D, (1)

where z is our continuous embedding. Our end-loss, Sim-
CLR+ LC , operates directly on u. Since sign() has an ill-
posed gradient at zero, it is challenging to back propagate
the loss gradient through this layer. Mathematically, we
wish to compute ∂LC/∂z given ∂LC/∂u. The problem
is addressed using the Discrete Proximal Linearized Mini-
mization (DPLM) method which was proposed in [11] and
used first time in neural networks in [12]. Under DPLM,
hashing, in general, can be viewed as an optimization prob-
lem:

min
u
LC(u), s.t. u ∈ {−1, 1}D (2)

Here, our loss is optimized w.r.t. u (putting aside the model
parameters for now). Then, using gradient descent:

ut+1 = ut − λ
∂LC

∂ut
s.t. u ∈ {−1, 1}D, (3)

where λ is the learning rate. This is a NP-hard problem con-
sidering the binary constraints on u. DPLM [11] suggests

Transform Train param. Test param. Method
Compress* [0.50 – 0.90] @10 [0.52 – 0.92] @10 OpenCV imencode()
Resize* [0.6 – 1.2] @10 [0.65 – 1.25] @10 OpenCV resize() Bilinear
Flip {0, 1} {0,1} Numpy
Rotate [-25 – 25] @15 [-26 – 26] @10 OpenCV warpAffine()
Padding [0.01 – 0.1] @10 [0.015 – 0.105] @10 Numpy
Sharpness [0.25 – 4.0] @15 [0.20 – 4.2] @10 PIL ImageEnhance
Gaussian noise [0.1 – 1.1] @10 [0.15 – 1.15] @10 Numpy random Gaussian
Color enhancement [0.5 – 2.0] @10 [0.45 – 2.05] @10 PIL ImageEnhance
Shot noise N/A [12 – 80] @10 Numpy random Poisson
Impulse noise N/A [0.01 – 0.1] @10 SkLearn random salt&pepper
Speckle noise N/A [0.15 – 0.35] @10 Numpy random speckle
Gaussian blur N/A [1.0 – 3.0] @10 ScikitImage Gaussian filter
Defocus blur N/A Radius [2 – 5]@10, std [0.1 – 0.5]@10 OpenCV disk filter
Pixelate N/A [0.25 – 0.6]@10 PIL box filter

Table 1. Transformation methods and its train/test parameter ranges used in PSBattles24K and PSBattles360K-S. Notation [x1 − x2]@k
indicates that k values are uniformly sampled from [x1, x2] range where x1 and x2 are the lower and upper bound values. * indicates
primary methods. The PSBattles24K benign test set contains images transformed using a combination of 2 primary and 1-3 secondary
methods selected at random (Flip, Rotate, Padding, Sharpness, Gaussian noise, Color Enhancement). The PSBattles360K-S dataset has
360K images generated using individual transformations, of which a half is created via 6 seen methods (Compression, Rotate, Padding,
Sharpness, Gaussian noise, Color enhancement) and the another half via 6 unseen methods (Shot noise, Impulse noise, Speckle noise,
Gaussian blur, Defocus blur and Pixelate).

Method Benchmark I Benchmark II
mAP mmAP mAP mAP FmAP R@1 R@1 FR1

OSCAR-Net 0.8898 0.7411 0.7866 0.7283 0.3782 0.6635 0.8105 0.3648
GNN 0.8807 0.7111 0.7682 0.6929 0.3643 0.6544 0.7720 0.3542
CNN 0.7980 0.6086 0.6924 0.7142 0.3516 0.5639 0.8003 0.3308
GreedyHash [12] 0.6635 0.3456 0.5893 0.3957 0.2367 0.4932 0.4784 0.2428
HashNet [2] 0.8093 0.4031 0.7354 0.2837 0.2047 0.6291 0.3736 0.2344
CSQ [13] 0.5785 0.2838 0.5104 0.4545 0.2404 0.4291 0.5226 0.2356
DFH [8] 0.3207 0.1595 0.3107 0.6657 0.2118 0.2470 0.7247 0.1842
DBDH [14] 0.6908 0.3339 0.5889 0.3508 0.2199 0.4818 0.4287 0.2268
DSDH [6] 0.6958 0.3280 0.5878 0.3214 0.2078 0.4693 0.4091 0.2186
ADSH [5] 0.3339 0.1887 0.2458 0.6112 0.1753 0.1578 0.7041 0.1289
DPSH [7] 0.8202 0.3917 0.8003 0.2197 0.1724 0.7159 0.2936 0.2082
DSH [9] 0.2416 0.1358 0.1962 0.7523 0.1556 0.1318 0.8274 0.1137
DHN [15] 0.1803 0.0898 0.1737 0.7396 0.1407 0.1291 0.7851 0.1108
wHash [1] 0.5338 0.2274 0.4981 0.1132 0.0922 0.4652 0.1372 0.1059
aHash [1] 0.5764 0.2668 0.5231 0.1114 0.0919 0.4892 0.1382 0.1077
pHash [1] 0.6008 0.3260 0.5515 0.0918 0.0787 0.5203 0.1196 0.0972
ISCC [10] 0.6003 0.3252 0.5506 0.0918 0.0787 0.5186 0.1189 0.0967
dHash [1] 0.6164 0.2890 0.5363 0.0681 0.0604 0.4993 0.0818 0.0703
cHash [1] 0.2509 0.1018 0.2866 0.5601 0.1896 0.2284 0.6264 0.1674

Table 2. An expanded version of Tab.1 in the main submission, showing the components used to compute overall Benchmark II scores
FmAP and FR1 via eq. 14 of the main paper. For all metrics, higher is better.

that we can approximate ut+1 as the closest discrete point
to the continuous (ut − λ∂LC/∂ut), that is:

ut+1 = sign(ut − λ
∂LC

∂ut
), (4)

which can be split into:

ut+1 = sign(zt+1), (5)

zt+1 = ut − λ
∂LC

∂ut
, (6)

Figure 1. Object occurrence statistics on the PSBattles24K test set
using the instance object detection model, Mask R-CNN [3], with
objectness threshold 0.5. “Person” is the most popular object and
the only class with average number of occurrence greater than 1 in
this dataset.

Figure 2. Examples of PSBattles24K original-manipulated pairs.

but the gradient descent rules applies to z as well:

zt+1 = zt − λ
∂LC

∂zt
(7)

= (zt − ut) + ut − λ
∂LC

∂zt
, (8)

By comparing two equations 6 and 8, we can safely allow
∂LC

∂zt
= ∂LC

∂ut
if we can regularize zt close to ut element-

wise. This is implemented via the second loss term LB =
||z − u||p, where the value of p defines the regularization’s
gradient surface (p = 3 in our work and [12], p = 2 in
[11]). The total loss now becomes L(.) = LC(.)+αLB(.),
as shown in subsec.3.4. The gradient w.r.t. z can be back
propagated as (assume p = 3):

∂L
∂z

=
∂LC

∂u
+ 3α ||z − u||2 . (9)

2.2. Triplet+ details

Recall, the formula of Triplet+ loss used in our ablation
study (subsec. 4.4 in the main paper submission) is:

L(zi, zi+, zi−) = max(0,m+ d(zi, zi−)− d(zi, zi+))+
βd(zi, zi−),

(10)

where d(.) is cosine similarity, m is the margin that defines
a distance threshold between the positive and negative pairs
(m = 0.2), β is a constant weighting the second loss term
(β = 0.01). Unlike standard Triplet, the anchor image i
in Triplet+ can be either an original or manipulated image.
The positive image i+ is a random benign transformation
of i (so it can be either original or manipulated derivatives).
The negative image i− is sampled stochastically from ei-
ther two sets: same-instance-different-variant (SIDV) and
different-instance (DI). For SIDV, the negative is the same
image as the anchor, but if anchor is manipulated, then the
negative is the original image (and vice-versa). For DI, a
different image to the anchor is used. The sets are sampled
with ratio 90:10 respectively. This allows the model to learn
from negative samples with both small semantic changes
(90%) as well as large global differences (10%). As the dif-
ference between the original and manipulated pairs is often
subtle, the second term d(zi, zi−) was added to explicitly
encourage the separation of negative and anchor images.
Triplet+ achieves comparable performance with SimCLR+
however its training strategy is more complex (sampling of
triplets) and requires more hyper-parameters (β, SIDV-DI
ratio) therefore is not favored.

3. Experiments
3.1. Table 1 full results

Tab. 2 extends Tab. 1 in the main submission, includ-
ing mAP, mAP , R@1 and R@1 scores for benchmark II.

Within this benchmark, mAP and R@1 are performance
metrics of the benign query set, while mAP and R@1 are
scores when querying the manipulated set.

3.2. Visual explanation

In addition to Figure 1 of the main paper, we present
further visual explanation examples in Fig. 5, with failure
cases. We extend GradCam to visualize the dis-similarity
between images by feeding the gradient of an objective
function (c.f. eq.14 subsec.4.6) back to the early layers,
and observe which areas of the intermediate feature maps
are activated most. Note that in eq.14, we freeze the gradi-
ent w.r.t. f(x+) and f(x−) and compute ∂L(x|x+, x−)/∂x
only. The objective function is illustrated in Fig. 4.

Figure 4. Illustration of the GradCam objective function in eq.14.

References
[1] J. Buchner. Imagehash. https://pypi.org/

project/ImageHash/, 2020. 2
[2] Z. Cao, M. Long, J. Wang, and P. S. Yu. Hashnet: Deep

learning to hash by continuation. In Proc. CVPR, pages
5608–5617, 2017. 2

[3] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.
In Proc. ICCV, pages 2961–2969, 2017. 1, 3

[4] S. Heller, L. Rossetto, and H. Schuldt. The PS-Battles
Dataset – an Image Collection for Image Manipulation De-
tection. CoRR, abs/1804.04866, 2018. 1

[5] Q-Y. Jiang and W-J. Li. Asymmetric deep supervised hash-
ing. In AAAI, 2018. 2

[6] Q. Li, Z. Sun, R. He, and T. Tan. Deep supervised discrete
hashing. In Proc. NeurIPS, pages 2482–2491, 2017. 2

[7] W. Li, S. Wang, and W-C. Kang. Feature learning based
deep supervised hashing with pairwise labels. In Proc. IJ-
CAI, pages 1711–1717, 2016. 2

[8] Y. Li, W. Pei, and J. van Gemert. Push for quantization: Deep
fisher hashing. BMVC, 2019. 2

[9] H. Liu, R. Wang, S. Shan, and X. Chen. Deep supervised
hashing for fast image retrieval. In Proc. CVPR, pages 2064–
2072, 2016. 2

[10] T. Pan. Digital-content-based identification: Similarity hash-
ing for content identification in decentralized environments.
In Proc. Blockchain for Science, 2019. 2

[11] F. Shen, X. Zhou, Y. Yang, J. Song, H. T. Shen, and D. Tao.
A fast optimization method for general binary code learning.
IEEE TIP, 25(12):5610–5621, 2016. 1, 4

Original (a) Resize (b) Compress (d) Flip

(e) Rotate (f) Padding (g) Sharpness (h) Gaussian Noise

(i) Color saturation (j) Shot noise (k) Impulse noise (l) Speckle noise

(m) Gaussian blur (n) Defocus blur (o) Pixelate (p) Mixed
Figure 3. Examples of benign transformations seen (a-i) and unseen (j-o) by the model during the training. (p) is a mix of several random
transformations above (used in the PSBattles24K test set).

[12] S. Su, C. Zhang, K. Han, and Y. Tian. Greedy hash: Towards
fast optimization for accurate hash coding in CNN. In Proc.
NeurIPS, pages 798–807, 2018. 1, 2, 4

[13] L. Yuan, T. Wang, X. Zhang, F. Tay, Z. Jie, W. Liu, and J.
Feng. Central similarity quantization for efficient image and
video retrieval. In Proc. CVPR, pages 3083–3092, 2020. 2

[14] X. Zheng, Y. Zhang, and X. Lu. Deep balanced discrete hash-
ing for image retrieval. Neurocomputing, 2020. 2

[15] H. Zhu, M. Long, J. Wang, and Y. Cao. Deep hashing net-
work for efficient similarity retrieval. In Proc. AAAI, 2016.
2

Figure 5. Further visual explanations of dis-similarity via our adapted GradCAM visualization technique. For each example, the visual-
ization of dis-similarity is leftmost. An image with benign transformations is shown middle. The manipulated image is rightmost. The
benign transformation is ignored and the manipulation highlighted. The last two rows are failure cases. In the former, the transparent
bubble is manipulated but the heat map shifts towards the nearby cat’s face. The latter sees the heat map focusing correctly at the paper but
incorrectly at the tattoo. In both cases benign transformation is ignored correctly.

