
Supplementary Material for
“STEM: An approach to Multi-source Domain Adaptation with

Guarantees”

This is the supplementary material for “STEM: An approach to Multi-source Domain Adaptation with Guarantees”. In
the first section of this supplementary material, we provide proof for our theory developed, while presenting implementation
specification and additional experimental results in the second section.

1 Theoretical Developments
Theorem 1. If ` is a convex function, the following statements hold true:

i) L
(
hS ,DSπ

)
≤ max1≤k≤K L

(
hSk ,DSk

)
.

ii) If each individual expert is an ε-qualified classifier (i.e., L
(
hSk ,DSk

)
≤ ε), the multi-source teacher expert hS is also

an ε-qualified classifier (i.e., L
(
hS ,DSπ

)
≤ ε).

Proof. i) We have

L
(
hS ,DSπ

)
=

∫
X×Y

`
(
hS (x, y)

)
pSπ (x, y) dxdy

≤
∫
X×Y

`

(
K∑
k=1

πkp
S
k (x, y)∑K

j=1 πjp
S
j (x, y)

hSk (x, y)

)
pSπ (x, y) dxdy

≤
∫
X×Y

K∑
k=1

πkp
S
k (x, y)∑K

j=1 πjp
S
j (x, y)

`
(
hSk (x) , y

)
pSπ (x, y) dxdy

≤
K∑
k=1

πk

∫
X×Y

pSk (x, y)

pSπ (x, y)
`
(
hSk (x) , y

)
pSπ (x, y) dxdy

=

K∑
k=1

πk

∫
X×Y

`
(
hSk (x) , y

)
pSk (x, y) dxdy

=

K∑
k=1

πkL
(
hSk ,DSk

)
≤ max

1≤k≤K
L
(
hSk ,DSk

)
.

Note that `
(
hSk (x) , y

)
:= `

(
hSk (x, y)

)
where hSk (x) =

[
hSk (x, y)

]M
y=1

and ` (t) = − log (t) for the cross-entropy loss.
ii) It is trivial from (i).

As indicated by Theorem 1, the multi-source teacher expert hSpredicts well data examples sampled from DSπ which is
a mixture of DS1:K . It is natural to ask the question of the factors that influence the performance of hS when predicting on
the target joint distribution DT . To facilitate the following theorem, we define a hybrid joint distribution Dh with the density
function ph (x, y) consisting of the pairs (x, y) in which the data example x ∼ PSπ =

∑K
k=1 πkPSk and the label y is sampled

using pT (y | x):

ph (x, y) = pT (y | x)

K∑
k=1

πkp
S
k (x) = pT (y | x) pSπ (x) .
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Theorem 3. If ` is a convex function and upper-bounded by a positive constant L, the general loss L
(
hS ,DT

)
is upper-

bounded by:

i) A
[
maxk L

(
hSk ,D

S
k

)
+ Lmaxk EPS

k

[
‖∆pk (y | x)‖1

]]α−1
α where A = exp

{
Rα
(
PT ‖PSπ

)}α−1
α L

1
α in which Rα

(
PT ‖PSπ

)
repre-

sents the Rényi divergence between those distributions and ∆pk (y | x) :=
[∣∣pSk (y = m | x)− pT (y = m | x)

∣∣]M
m=1

represents the
label shift between the labeling assignment mechanisms of an individual source domain and target domain.

ii) A
[
ε+ Lmaxk EPS

k

[
‖∆pk (y | x)‖1

]]α−1
α provided that L

(
hSk ,D

S
k

)
≤ ε, ∀k = 1, ...,K.

Proof. i) We have

L
(
hS ,Dh

)
=

∫
`
(
hS (x) , y

)
ph (x, y) dxdy = L

(
hS ,DSπ

)
+

∫
`
(
hS (x) , y

) [
ph (x, y)− pSπ (x, y)

]
dxdy

≤ L
(
hS ,DSπ

)
+

∫
`
(
hS (x) , y

)
|ph (x, y)− pSπ (x, y) |dxdy

≤ L
(
hS ,DSπ

)
+ L

∫
|ph (x, y)− pSπ (x, y) |dxdy

= L
(
hS ,DSπ

)
+ L

∫ K∑
k=1

πkp
S
k (x) |pT (y | x)− pSk (y | x) |dxdy

= L
(
hS ,DSπ

)
+ L

K∑
k=1

πk

∫
pSk (x)

M∑
y=1

|pT (y | x)− pSk (y | x) |dx

= L
(
hS ,DSπ

)
+ L

K∑
k=1

πkEPSk [‖∆pk (y | x)‖1]

≤ max
k
L
(
hSk ,DSk

)
+ Lmax

k
EPSk [‖∆pk (y | x)‖1] .

Note that we have used L
(
hS ,DSπ

)
≤ maxk L

(
hSk ,DSk

)
(referred to Theorem 1).

Finally, we manipulate L
(
hS ,DT

)
as

L
(
hS ,DT

)
=

∫
X×Y

`
(
hS (x) , y

)
pT (x, y) dxdy

=

∫
X×Y

pT (x, y)

ph (x, y)
α−1
α

ph (x, y)
α−1
α `

(
hS (x) , y

)
dxdy.

The Holder inequality gives us

L
(
hS ,DT

)
≤

[∫
X×Y

pT (x, y)
α

ph (x, y)
α−1 dxdy

] 1
α [∫

X×Y
ph (x, y) `

(
hS (x) , y

) α
α−1 dxdy

]α−1
α

.

Referring to the definition of the Rényi divergence and note that `
(
hS (x) , y

)
≤ L, we obtain

L
(
hS ,DT

)
≤
[
exp

{
Rα
(
DT ‖Dh

)}
L
(
hS ,Dh

)]α−1
α L

1
α .

We further derive

Rα
(
DT ‖Dh

)
=

1

α− 1
log

∫ [
pT (x, y)

ph (x, y)

]α−1
pT (x, y) dxdy

=
1

α− 1
log

(∫ [
pT (x)

pSπ (x)

]α−1 M∑
y=1

pT (x, y) dx

)

=
1

α− 1
log

(∫ [
pT (x)

pSπ (x)

]α−1
pT (x) dx

)
= Rα

(
PT ‖PSπ

)
.
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Finally, we reach the following inequality:

L
(
hS ,DT

)
≤
[
exp

{
Rα
(
PT ‖PSπ

)}
L
(
hS ,Dh

)]α−1
α L

1
α .

ii) It is trivial from (i) and L
(
hSk ,DSk

)
≤ ε,∀k = 1, ...,K.

In what follows, we present how to train the multi-source teacher expert hS . Our workaround to train hS comes from the
following theoretical observation. Assume that we have K distributions R1:K with density functions r1:K (z). We form a joint
distribution D of a data instance z and label t ∈ {1, ...,K} by sampling an index t ∼ Cat(π), sampling x ∼ Rt, and collecting
(z, t) as a sample from D. With this setting, we have the following corollary.

Corollary 2. If we train a source domain discriminator C to classify samples from the joint distribution D using the cross-
entropy loss (i.e., CE (·, ·)), the optimal source domain discriminator C∗defined as

C∗ = argminCE(z,t)∼D [CE (C (z) , t)]

satisfies C∗ (z) =
[

πiri(z)∑
j πjrj(z)

]K
i=1

.

Proof. We have

E(z,t)∼D [CE (C (z) , t)] =

K∑
t=1

πt

∫
CE (C(z), t) rt (z) dz

=−
∫ K∑

t=1

log C (z, t)πtrt (z) dz.

Given z, we now find C∗ = [C∗t ]
K
t=1 subjected to ‖C∗‖1 = 1 and C∗ ≥ 0 to maximize

max
C:‖C‖1=1

K∑
t=1

log Ctπtrt (z) .

The Lagrange function is as follows:

L =

K∑
t=1

log Ctπtrt (z)− λ

(
K∑
t=1

Ct − 1

)
.

Setting the derivatives to 0, we obtain

∂L
∂Ct

=
πtrt (z)

Ct
− λ = 0, t = 1, ...,K.

Note that
∑K
t=1 Ct = 1, we arrive at

C∗t =
πtrt (z)∑
j πjrj (z)

, t = 1, ...,K.

Finally, we reach the conclusion.

2 Implementation Specification and Additional Experimental Results

2.1 Data preparation and preprocessing
Digits-five. The resolution of digit images is resized to 32× 32, and we normalize pixel values to the range of [−1, 1].
Office-Caltech10 and DomainNet. We resize the resolution of images to 224×224, and then use those preprocessing images
for ResNet-101 [1]. Additionally, for DomainNet, we find that adaptation tasks are much challenging due to the dissimilarity
across domains. To reduce the domain gap, we apply the horizontal flip transformation to increase data diversity during the
training process.
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Architecture Digit-five Office-Caltech10 DomainNet
Input size 32× 32× 3 224× 224× 3 224× 224× 3

Generator G

instance normalization transformation
3× 3 conv. 64 lReLU ResNet101 ResNet101
3× 3 conv. 64 lReLU 256 dense, ReLU
3× 3 conv. 64 lReLU dropout, p = 0.5

2× 2 max-pool, stride 2 Gaussian noise, σ = 1
dropout, p = 0.5

Gaussian noise, σ = 1
3× 3 conv. 64 lReLU
3× 3 conv. 64 lReLU
3× 3 conv. 64 lReLU

2× 2 max-pool, stride 2
dropout, p = 0.5

Gaussian noise, σ = 1

Classifier hS1:K , h
T

3× 3 conv. 64 lReLU M dense, softmax M dense, softmax
3× 3 conv. 64 lReLU
3× 3 conv. 64 lReLU
global average pool
M dense, softmax

Source domain
discriminator C

100 dense, ReLU K dense, ReLU K dense, ReLU
K dense, ReLU

Table 1: Network architecture of STEM. The Leaky ReLU (lReLU) parameter a is set to 0.1. K and M denote the number of
source domains and the number of classes respectively.
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Figure 1: Test accuracy (%) when tweaking α and β on “→sv” (blue) and “→sy” (red) tasks.
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Figure 2: The comparison of test error of our STEM (red) with the current state-of-the-art LtC-MSDA (blue)
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2.2 Architecture
The network architecture in detail for each dataset is shown in Table 1. We use a small convolutional neural network for Digit-
five since this dataset is easy to be converged. For the two other datasets, we both use Resnet-101 pre-trained on ImageNet as
the backbone, which is frozen when training on Office-Caltech10 and fine-tuned on DomainNet. All experiments are run on a
computer with an NVIDIA Tesla V100 SXM2 with 16 GB memory.

2.3 Additional ablation study
In section 3.6.5 of the main paper, we update our network by minimizing loss funtion:

K∑
k=1

Liek + αLC + Lm + βLclus − γLd. (1)

These two parameters α and β help to discriminate source domains in latent space and ensure the clustering assumption [2],
respectively. Figure 1 depicts the model performance with a diverse range of α and β on “→sv” and “→sy” tasks. Following
the result, β significantly affects both tasks in [0.5, 1] and less sensitive in [0, 0.5], while adjusting α gives a stable performance
in most cases. After searching their values in the range of [0, 1], we observe that our network achieves good performances
with α = 1.0 and β = 0.1.
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Figure 3: Effect of GAN relevant trade-off parameter γ to the performance on the→sv (blue) and→mm (red) tasks.

GAN components (i.e., generator and discriminator) play a vital role in our framework to diminish the data distribution
discrepancy of the target domain and mixture of source domains in the latent space. We conduct experiments to study the
effect of the parameter γ on the transferring performance. We experiment on the→sv and→mm task by varying γ in [0, 0.5].
As shown in Figure 3, on the→mm task, γ quite significantly influences the performance, while for the case of→sv task, it
stably affects the performance. This totally depends on how distant the target domain and source domains in the latent space.
We empirically find that γ = 0.1 works satisfactorily for most of the cases.

2.4 Convergence
We testify the convergence of our STEM with the test error on “→sv” and “→sy” tasks and compare our proposal with the
state-of-the-art method named LtC-MSDA [3]. The comparison is presented in Figure 2. Following the result, our STEM
enjoys faster and stable convergence in which the test error is significantly lower than LtC-MSDA method.
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