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1. Outline
This supplementary material provides further investiga-

tions for the proposed PointSeaNet. To be concrete, further

analysis experiments are presented in Sec. 2. More details

of our network architectures and training parameters are de-

scribed in Sec. 3. Moreover, additional segmentation results

on the S3DIS and ShapeNetPart benchmark are provided in

Sec. 4. Finally, we show more result visualizations of shape

part segmentation, large-scale scene segmentation and nor-

mal estimation in Sec. 5.

2. Further Investigations
In this section, we provide further investigations of

PointSeaNet on two aspects, i.e., the impact of the num-

ber of cells for architecture search and the influence of the

dropout technique.

Number of cells for architecture search. To better under-

stand the effect of stacked cells for architecture search, we

conduct architecture evaluation at different numbers of cell-

s during the search phase for shape classification on Mod-

elNet40, which is different from the ablation study on s-

tacked cells during the evaluation process (Sec. 4.3) in the

main paper. All the search procedures are conducted on one

NVIDIA TITAN Xp. The quantitative results are summa-

rized in Tab. 1. To allow fair comparison, we choose the

same setting for each case in Tab. 1 during the evaluation

phase, including 6 stacked cells for architecture evaluation.

From this table, we have the following two observations.

First, the impact of the number of cells on architectural pa-

rameters is limited, yet it significantly causes search cost

with the increase of the cells. Second, PointSeaNet can

achieve an evaluation accuracy of 93.7% with only 1 cell

for architecture search. This adequately demonstrates that

∗Corresponding author.

# Cells1 OA #params Search Cost

(%) (M) (GPU-days)

1 93.7 7.30 0.16

2 94.2 8.45 0.25

3 94.1 9.05 0.57

4 94.0 9.95 0.81

Table 1. The comparisons of different numbers of cells for archi-

tecture search. All the results are reported during the evaluation

phase.

ratio(%) 0 10 20 30 40 50 60 70

acc. 93.7 93.8 93.7 94.0 94.1 94.2 93.9 93.4

Table 2. The results (%) of dropout with different ratios applied on

dropout p′
i in Eq. (4) in the main paper.

PointSeaNet can achieve superior evaluation performance

with only a few parameters for architecture search.

Dropout on p′
i in Eq. (4). Dropout technique is capable of

driving the network to represent as an ensemble of a large

number of subsets and reducing the risk of model overfit-

ting. To show its impact on PointSeaNet, we select different

radios on p′
i in Eq. (4) in the main paper for shape classifi-

cation on the ModelNet40 benchmark. Tab. 2 summarizes

the results. As can be seen, the best result of 94.2% can

be obtained with a dropout ratio of 50%. Moreover, it is

noticeable that PointSeaNet can achieve a decent result of

93.7% even without the dropout technique, outperforming

most handcrafted methods.

3. Network Architectures and Parameters
In this section, we provide more details on classification

network, segmentation network and training parameters.

1Different from the ablation study in the main paper, here, #cells de-

notes the number of cells during the search phase, with 6 stacked cells for

architecture evaluation.
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Figure 1. The architectures of PointSeaNet applied in the classification (a) and segmentation (b) of point clouds. c is the number of classes

and p is the semantic labels. ⊕ denotes concatenation.

PointSeaNet Classification Network. The network archi-

tecture used for shape classification takes raw point cloud

as input, as shown in Fig. 1(a). It is first composed of a

shared MLP(128) network (with layer output size 128) on

each point. Then, we stack the searched cell 6 times to learn

underlying geometric features. Those features extracted by

the first MLP and each cell are concatenated to provide con-

textual semantic information. After the last cell, the features

are aggregated by a global max pooling and average pool-

ing, and then the outputs of the aggregation are concatenat-

ed. Finally, a shared MLP(512, 256, c) network is used as

the classifier, where c indicates the number of classes.

PointSeaNet Segmentation Network. The segmentation

network is an extension to the PointSeaNet classification

one, as illustrated in Fig. 1(b). The input points and point

features (the output after the last cell) are concatenated in

the channel dimension. As used in [9, 11, 16], we also add a

one-hot vector that contains the object class of input points.

This vector is repeated n times and then concatenated with

the point features. Finally, the output segmentation scores

are obtained by a shared MLP(512, 256, p) network with-

out any global pooling layer, where p denotes the semantic

labels. No dropout is applied and other hyperparameters are

the same as the classification network.

Training Parameters. In our experiment, there are 6 nodes

with 3 intermediate nodes for each cell architecture, where

the output node is defined as the depth-wise concatenation

of its four precedents. Each intermediate node must select

two input nodes from its precedents. PointSeaNet is ob-

tained through two stages, a search phase and an evaluation

phase. During the search phase, we stack each identical cell

2 times to search the optimal convolution and cell architec-

ture for 50 epochs. After search, we stack the searched cell

architecture 6 times to form a large backbone network, and

then train it from scratch for 400 epochs. We use the same

settings for all the NAS methods. Usually, NAS methods

use different settings from the handcrafted ones. We report

the best results for two class of methods. Our PointSeaNet

is implemented with Pytorch. Neighboring points in local

point subset are gathered by k nearest neighbor in the first

operation of each cell. During the search phase, 2 cells with

32 initial channels and k = 9 are used to search the optimal

cell architecture for 50 epochs with batch size 16. SGD is

employed with an initial learning rate 0.005, momentum 0.9
and weight decay 3 × 10−4. A cosine annealing is used to

schedule the learning rate with the minimum learning rate

1 × 10−4. For the evaluation phase, we stack the searched

cell 6 times and apply k = 20 to form a larger network,

and then the final network is trained from scratch for 400
epochs with batch size 128. The Adam optimization algo-

rithm with learning rate 0.001 and weight decay 1 × 10−4

is employed, where a cosine annealing with the minimum

learning rate 1× 10−5 is used to schedule the learning rate.

Regarding the epsilon-greedy algorithm, we set the prob-

ability ε to be 0.5, which is responsible for balancing the

greedy algorithm and random algorithm when choosing the

essential association candidates in convolution search.

4. Additional Segmentation Results

We provide more details of our PointSeaNet on the

S3DIS (Tab.3 and Tab.4) and ShapeNetPart (Tab. 5) bench-

mark, which contain segmentation scores of each class.

On S3DIS [1], our PointSeaNet and PointSeaNet† out-

perform all the compared methods with significant advan-



tage, which set new state of the arts in point-based meth-

ods over 9 categories on the 6-fold cross-validation. On

ShapeNetPart [19], our PointSeaNet significantly surpass-

es the second best method, i.e., Densepoint [9], with 1.5↑
in class mIoU and 1.4↑ in instance mIoU, respectively.

Note that, our two searched models also set new state of

the arts in point-based methods over fourteen categories.

In addition, PointSeaNet achieves better performance than

PointSeaNet† in most classes, which adequately validates

the effectiveness of integrating epsilon-greedy into the con-

volution search.

5. More Visualizations
In this section, we show more visualization results of

large-scale scene segmentation (Fig. 2), shape part segmen-

tation (Fig. 3) and normal estimation (Fig. 4), respective-

ly. As can be seen, compared with PointNet++ [12] and

PointNet [11], our PointSeaNet obtains superior normal es-

timation results. Additionally, although the indoor scenes

implied in irregular points are varied and they may be very

confusing to recognize, our PointSeaNet can also segmen-

t them out with decent accuracy. However, PointSeaNet

could also be less effective for several intractable shapes,

such as lamps in normal estimation and motorbikes in shape

part segmentation.
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Method OA mIoU ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointNet [11] 78.6 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2

SPG [3] 85.5 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9

PointCNN [8] 88.1 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6

PointWeb [21] 87.3 66.7 93.5 94.2 80.2 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5

KPConv [15] - 70.6 93.6 92.4 83.1 63.9 54.3 66.1 76.6 57.8 64.0 69.3 74.9 61.3 60.3

RandLA-Net [4] 87.2 68.5 92.7 95.6 79.2 61.7 47.0 63.1 67.7 68.9 74.2 55.3 63.4 63.0 58.7

PointSeaNet† 89.6 71.2 94.3 95.4 80.1 62.7 55.8 65.6 74.0 65.3 68.2 66.9 72.5 65.1 59.3

PointSeaNet 90.3 71.9 95.2 93.4 83.9 64.3 51.1 67.3 77.5 67.9 70.1 63.6 75.9 64.2 60.8

Table 3. Scene segmentation results (%) on S3DIS 6-fold (‘-’: unknown).

Method OA mIoU ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointNet [11] - 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2

SPG [3] 86.4 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2

PointCNN [8] 85.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7

PointWeb [21] 87.0 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5

KPConv [15] - 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 91.0 81.5 75.3 75.4 66.7 58.9

PointSeaNet† 88.1 68.2 92.6 97.3 82.9 0.0 24.8 63.2 69.4 88.5 88.1 74.5 76.8 68.6 59.6

PointSeaNet 89.2 69.0 93.1 98.0 84.6 0.0 26.3 64.6 70.9 89.4 86.9 76.1 77.2 69.9 60.3

Table 4. Scene segmentation results (%) on S3DIS Area-5 (‘-’: unknown).

Method input
class

mIoU

inst.

mIoU
aero bag cap car chair ear guit knif lamp lapt moto mug pist rock skate table

Kd-Net [6] 4k 77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

PointNet [11] 2k 80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

RS-Net [5] - 81.4 84.9 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2

SCN [17] 1k 81.8 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 82.9 96.0 69.2 93.8 82.5 62.9 74.4 80.8

PCNN [2] 2k 81.8 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8

SPLATNet [14] - 82.0 84.6 81.9 83.9 88.6 79.5 90.1 73.5 91.3 84.7 84.5 96.3 69.7 95.0 81.7 59.2 70.4 81.3

KCNet [13] 2k 82.2 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3

DGCNN [16] 2k 82.3 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0

RS-CNN [10] 2k 84.0 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6

Densepoint [9] 2k 84.2 86.4 84.0 85.4 90.0 79.2 91.1 81.6 91.5 87.5 84.7 95.9 74.3 94.6 82.9 64.6 76.8 83.7

PointNet++ [12] 2k,nor 81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

SyncCNN [20] mesh 82.0 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1

SO-Net [7] 1k,nor 80.8 84.6 81.9 83.5 84.8 78.1 90.8 72.2 90.1 83.6 82.3 95.2 69.3 94.2 80.0 51.6 72.1 82.6

SpiderCNN [18] 2k,nor 82.4 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8

PointSeaNet† 2k 85.2 87.3 86.8 86.2 89.3 80.9 91.8 81.5 92.9 88.8 85.3 95.8 76.6 94.7 83.9 64.4 79.2 84.7

PointSeaNet 2k 85.7 87.8 87.6 85.9 91.7 81.8 92.1 81.3 93.4 89.3 86.7 96.9 75.2 95.9 84.8 64.1 78.9 85.6

Table 5. Shape part segmentation results (%) on ShapeNetPart (nor: normal, ‘-’: unknown).



Figure 2. Large-scale scene segmentation results on S3DIS. In the first column we show the input point clouds of some complex scenes.
In the second column, we provide the semantic segmentation results of our PointSeaNet. In the last column, we show the corresponding
ground-truths.



Figure 3. PointSeaNet shape part segmentation results on ShapeNetPart.



Figure 4. PointSeaNet normal estimation results on ModelNet40. Results from left to right: ground truth normals, PointSeaNet, Point-
Net++ [12], PointNet [11]. For clearness, only the predictions with angle less than 30% in blue and angle greater than 90% in red between
ground truth normals are shown.


