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1. Outline

This supplementary material provides further investiga-
tions for the proposed PointSeaNet. To be concrete, further
analysis experiments are presented in Sec. 2. More details
of our network architectures and training parameters are de-
scribed in Sec. 3. Moreover, additional segmentation results
on the S3DIS and ShapeNetPart benchmark are provided in
Sec. 4. Finally, we show more result visualizations of shape
part segmentation, large-scale scene segmentation and nor-
mal estimation in Sec. 5.

2. Further Investigations

In this section, we provide further investigations of
PointSeaNet on two aspects, i.e., the impact of the num-
ber of cells for architecture search and the influence of the
dropout technique.

Number of cells for architecture search. To better under-
stand the effect of stacked cells for architecture search, we
conduct architecture evaluation at different numbers of cell-
s during the search phase for shape classification on Mod-
elNet40, which is different from the ablation study on s-
tacked cells during the evaluation process (Sec. 4.3) in the
main paper. All the search procedures are conducted on one
NVIDIA TITAN Xp. The quantitative results are summa-
rized in Tab. 1. To allow fair comparison, we choose the
same setting for each case in Tab. 1 during the evaluation
phase, including 6 stacked cells for architecture evaluation.
From this table, we have the following two observations.
First, the impact of the number of cells on architectural pa-
rameters is limited, yet it significantly causes search cost
with the increase of the cells. Second, PointSeaNet can
achieve an evaluation accuracy of 93.7% with only 1 cell
for architecture search. This adequately demonstrates that
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1 OA #params Search Cost
f# Cells (%) M) (GPU-days)
1 93.7 7.30 0.16
2 94.2 8.45 0.25
3 94.1 9.05 0.57
4 94.0 9.95 0.81

Table 1. The comparisons of different numbers of cells for archi-
tecture search. All the results are reported during the evaluation
phase.

ratio(%) 0 10 20 30 40 50 60 70
acc. 937 93.8 937 940 941 942 939 934

Table 2. The results (%) of dropout with different ratios applied on
dropout p; in Eq. (4) in the main paper.

PointSeaNet can achieve superior evaluation performance
with only a few parameters for architecture search.

Dropout on p, in Eq. (4). Dropout technique is capable of
driving the network to represent as an ensemble of a large
number of subsets and reducing the risk of model overfit-
ting. To show its impact on PointSeaNet, we select different
radios on p) in Eq. (4) in the main paper for shape classifi-
cation on the ModelNet40 benchmark. Tab. 2 summarizes
the results. As can be seen, the best result of 94.2% can
be obtained with a dropout ratio of 50%. Moreover, it is
noticeable that PointSeaNet can achieve a decent result of
93.7% even without the dropout technique, outperforming
most handcrafted methods.

3. Network Architectures and Parameters

In this section, we provide more details on classification
network, segmentation network and training parameters.

I Different from the ablation study in the main paper, here, #cells de-
notes the number of cells during the search phase, with 6 stacked cells for
architecture evaluation.
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Figure 1. The architectures of PointSeaNet applied in the classification (a) and segmentation (b) of point clouds. c is the number of classes

and p is the semantic labels. ¢ denotes concatenation.

PointSeaNet Classification Network. The network archi-
tecture used for shape classification takes raw point cloud
as input, as shown in Fig. 1(a). It is first composed of a
shared MLP(128) network (with layer output size 128) on
each point. Then, we stack the searched cell 6 times to learn
underlying geometric features. Those features extracted by
the first MLP and each cell are concatenated to provide con-
textual semantic information. After the last cell, the features
are aggregated by a global max pooling and average pool-
ing, and then the outputs of the aggregation are concatenat-
ed. Finally, a shared MLP (512, 256, ¢) network is used as
the classifier, where c indicates the number of classes.

PointSeaNet Segmentation Network. The segmentation
network is an extension to the PointSeaNet classification
one, as illustrated in Fig. 1(b). The input points and point
features (the output after the last cell) are concatenated in
the channel dimension. As usedin [9, |1, 16], we also add a
one-hot vector that contains the object class of input points.
This vector is repeated n times and then concatenated with
the point features. Finally, the output segmentation scores
are obtained by a shared MLP(512, 256, p) network with-
out any global pooling layer, where p denotes the semantic
labels. No dropout is applied and other hyperparameters are
the same as the classification network.

Training Parameters. In our experiment, there are 6 nodes
with 3 intermediate nodes for each cell architecture, where
the output node is defined as the depth-wise concatenation
of its four precedents. Each intermediate node must select
two input nodes from its precedents. PointSealNet is ob-
tained through two stages, a search phase and an evaluation
phase. During the search phase, we stack each identical cell
2 times to search the optimal convolution and cell architec-

ture for 50 epochs. After search, we stack the searched cell
architecture 6 times to form a large backbone network, and
then train it from scratch for 400 epochs. We use the same
settings for all the NAS methods. Usually, NAS methods
use different settings from the handcrafted ones. We report
the best results for two class of methods. Our PointSeaNet
is implemented with Pytorch. Neighboring points in local
point subset are gathered by k nearest neighbor in the first
operation of each cell. During the search phase, 2 cells with
32 initial channels and k£ = 9 are used to search the optimal
cell architecture for 50 epochs with batch size 16. SGD is
employed with an initial learning rate 0.005, momentum 0.9
and weight decay 3 x 10™%. A cosine annealing is used to
schedule the learning rate with the minimum learning rate
1 x 10~*. For the evaluation phase, we stack the searched
cell 6 times and apply £ = 20 to form a larger network,
and then the final network is trained from scratch for 400
epochs with batch size 128. The Adam optimization algo-
rithm with learning rate 0.001 and weight decay 1 x 10~
is employed, where a cosine annealing with the minimum
learning rate 1 x 10~° is used to schedule the learning rate.
Regarding the epsilon-greedy algorithm, we set the prob-
ability € to be 0.5, which is responsible for balancing the
greedy algorithm and random algorithm when choosing the
essential association candidates in convolution search.

4. Additional Segmentation Results

We provide more details of our PointSeaNet on the
S3DIS (Tab.3 and Tab.4) and ShapeNetPart (Tab. 5) bench-
mark, which contain segmentation scores of each class.
On S3DIS [1], our PointSeaNet and PointSeaNet out-
perform all the compared methods with significant advan-



tage, which set new state of the arts in point-based meth-
ods over 9 categories on the 6-fold cross-validation. On
ShapeNetPart [19], our PointSeaNet significantly surpass-
es the second best method, i.e., Densepoint [9], with 1.57
in class mloU and 1.47 in instance mloU, respectively.
Note that, our two searched models also set new state of
the arts in point-based methods over fourteen categories.
In addition, PointSeaNet achieves better performance than
PointSeaNet! in most classes, which adequately validates
the effectiveness of integrating epsilon-greedy into the con-
volution search.

5. More Visualizations

In this section, we show more visualization results of
large-scale scene segmentation (Fig. 2), shape part segmen-
tation (Fig. 3) and normal estimation (Fig. 4), respective-
ly. As can be seen, compared with PointNet++ [12] and
PointNet [1 1], our PointSeaNet obtains superior normal es-
timation results. Additionally, although the indoor scenes
implied in irregular points are varied and they may be very
confusing to recognize, our PointSeaNet can also segmen-
t them out with decent accuracy. However, PointSeaNet
could also be less effective for several intractable shapes,
such as lamps in normal estimation and motorbikes in shape
part segmentation.
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Method OA mloU ceil. floor  wall beam  col. wind. door table chair sofa book. board clut.
PointNet [11] 78.6 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
SPG [3] 85.5 62.1 89.9 95.1 76.4 62.8 47.1 553 68.4 73.5 69.2 63.2 459 8.7 52.9
PointCNN [8] 88.1 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
PointWeb [21] 87.3 66.7 93.5 94.2 80.2 524 413 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5
KPConv [15] . 706 936 924 831 639 543 661 766 578 640 693 749 613 603
RandLLA-Net [4] 87.2 68.5 927 956 792 61.7 47.0 63.1 67.7 68.9 74.2 55.3 63.4 63.0 58.7
PointSeaNet 89.6 712 943 954 80.1 627 558 656 740 653 682 669 725 651 593
PointSeaNet 90.3 71.9 95.2 934 83.9 64.3 51.1 67.3 71.5 679 70.1 63.6 759 642 60.8
Table 3. Scene segmentation results (%) on S3DIS 6-fold (‘-’: unknown).
Method OA mloU ceil. floor  wall beam  col. wind. door table chair sofa book. board clut.
PointNet [11] - 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 52.6 58.9 40.3 5.9 26.4 33.2
SPG [3] 86.4 58.0 89.4 96.9 78.1 0.0 42.8 48.9 61.6 84.7 75.4 69.8 52.6 2.1 52.2
PointCNN [8] 85.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
PointWeb [21] 87.0 60.3 92.0 98.5 79.4 0.0 21.1 59.7 34.8 76.3 88.3 46.9 69.3 64.9 52.5
KPConv [15] - 67.1 928 973 82.4 0.0 23.9 58.0 69.0 91.0 81.5 753 754 66.7 58.9
PointSeaNet 88.1 68.2 92.6 97.3 829 0.0 24.8 632 694 88.5 88.1 745 76.8 68.6 59.6
PointSeaNet 89.2 69.0 93.1 98.0 84.6 0.0 263 646 709 894 869 76.1 77.2 69.9 60.3
Table 4. Scene segmentation results (%) on S3DIS Area-5 (‘*-’: unknown).
Method inpug O3S ISL .0 bag cap car chair es it knif lamp lapt moto mug pist rock skate tabl
etho pul mloU mloy 2cto bag cap car  chair ear gu amp lap oto mug pis ock skate table
Kd-Net [6] 4k 774 823 80.1 746 743 703 88.6 735 902 872 81.0 949 574 867 78.1 51.8 69.9 80.3
PointNet [11] 2k 80.4 837 834 78.7 825 749 89.6 73.0 91.5 859 80.8 953 652 93.0 81.2 579 72.8 80.6
RS-Net [5] - 81.4 849 827 86.4 84.1 782 904 69.3 91.4 87.0 83.5 954 66.0 92.6 81.8 56.1 75.8 82.2
SCN [17] 1k 81.8 84.6 83.8 80.8 83.5 79.3 90.5 69.8 91.7 86.5 829 96.0 69.2 93.8 82.5 629 744 80.8
PCNN [2] 2k 81.8 85.1 824 80.1 855 79.5 90.8 73.2 91.3 86.0 85.0 957 73.2 948 833 51.0 75.0 81.8
SPLATNet [14] - 82.0 84.6 819 839 88.6 79.5 90.1 73.5 91.3 847 845 963 69.7 95.0 81.7 59.2 704 81.3
KCNet [13] 2k 822 847 82.8 81.5 864 77.6 903 76.8 91.0 87.2 84.5 955 69.2 944 81.6 60.1 752 81.3
DGCNN [16] 2k 823 85.1 842 837 844 77.1 90.9 785 91.5 87.3 829 96.0 67.8 93.3 82.6 59.7 755 82.0
RS-CNN [10] 2k 84.0 862 835 84.8 88.8 79.6 91.2 81.1 91.6 884 86.0 96.0 73.7 94.1 834 60.5 77.7 83.6
Densepoint [9] 2k 842 864 84.0 854 90.0 79.2 91.1 81.6 91.5 87.5 84.7 959 743 94.6 829 64.6 76.8 83.7
PointNet++ [12] 2k,nor 819 851 824 79.0 87.7 77.3 90.8 71.8 91.0 859 837 953 71.6 94.1 813 587 764 82.6
SyncCNN [20] mesh 820 847 81.6 81.7 819 752 90.2 749 93.0 86.1 84.7 956 66.7 92.7 81.6 60.6 829 82.1
SO-Net [7] lk,nor 80.8 84.6 819 83.5 84.8 78.1 90.8 722 90.1 836 823 952 693 942 80.0 51.6 72.1 82.6
SpiderCNN [18] 2k,nor 824 853 835 81.0 872 77.5 90.7 76.8 91.1 87.3 833 958 70.2 93.5 82.7 59.7 75.8 82.8
PointSeaNet* 2k 852 873 86.8 86.2 89.3 809 91.8 81.5 929 88.8 853 958 76.6 947 83.9 64.4 79.2 84.7
PointSeaNet 2k 857 878 87.6 859 91.7 81.8 92.1 81.3 934 89.3 86.7 969 752 959 84.8 064.1 789 85.6
Table 5. Shape part segmentation results (%) on ShapeNetPart (nor: normal, ‘-’: unknown).
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Figure 2. Large-scale scene segmentation results on S3DIS. In the first column we show the input point clouds of some complex scenes.
In the second column, we provide the semantic segmentation results of our PointSeaNet. In the last column, we show the corresponding
ground-truths.
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Figure 3. PointSeaNet shape part segmentation results on ShapeNetPart.
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Figure 4. PointSeaNet normal estimation results on ModelNet40. Results from left to right: ground truth normals, PointSeaNet, Point-
Net++ [12], PointNet [ | 1]. For clearness, only the predictions with angle less than 30% in blue and angle greater than 90% in red between
ground truth normals are shown.



