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A. Ablation Studies for AutoEncoder

In Table 1 of the main paper, we quantitatively evaluate
our model in the case of a single articulated 3D object, while
in Section 5 in the main paper, we only show qualitative
results in the case of Autoencoder. Here, we supplement
those results with the quantitative ablation study for Au-
toencoder in Table A. The same test data settings (namely
“same pose/same view”, “novel pose/same view”, “same
pose/novel view”, and “novel pose/novel view”), metrics
(namely PSNR, SSIM, and Mask), and baseline methods
(namely NARFp, NARFy and NARFp, CNN-based, P-
NeRF and D-NARF) are used for comparison. The same
dataset as in Section 5 of the main paper is used for experi-
mentation.

At testing phase, when extracting the latent shape and ap-
pearance vectors (z¢ and z,) using the encoder, we use im-
ages under the same viewpoint distribution as in the training
images as input. Then, images from novel views and poses
are rendered by combining z4 and z, with unseen views and
poses in the training data.

Results Quantitative comparison results are given in Ta-
ble A. Qualitative results under the novel pose/novel view
setting are shown in Fig. B. Consistent with the case of a
single object, our method NARFp outperforms the others
under all the evaluation metrics and test data settings (best
results shown in bold). High quality depth and segmenta-
tion images are jointly generated as shown in Fig. B (right-
most column). CNN based models cannot represent 3D
structure effectively, so the performance drops significantly
in the “novel view” settings. Fig. B (left-top) shows that
in the novel view testing, the CNN-based method produces
fuzzy images. Meanwhile, it cannot generate depth and seg-
mentation images. P-NeRF and D-NARF fail in almost all
settings due to implicit transformation and part dependency
problems. NARFp generally performs well, but the com-
putational cost is too high. NARFy has poor performance
on “novel pose” due to part dependency issues. The perfor-
mance drop on novel pose in the Autoencoder case is not as

significant as in the single object case (shown in Table 1 of
the main paper) since the pose diversity in the training data
is much larger in the Autoencoder case.

B. Ablation Studies in RT-NeRF

In Section 3.3 of the main paper, we introduced the
rigidly transformed neural radiance field (RT-NeRF) to ef-
fectively model a rigidly transformed object part. Here, we
evaluate the effectiveness of the two most critical design el-
ements in RT-NeRF. The first is the explicit transformation
that converts a global 3D location into the local coordinate
system and the local 3D location is then used to estimate the
density using Eqgs. 9 and 10 of the main paper. The second
is the pose-dependent color estimation defined in Eq. 11
of the main paper. It takes the 6D vector se(3) representa-
tion & of transformation [ as a network input to estimate the
RGB color ¢. To this end, two more baseline methods are
introduced accordingly to compare to RT-NeRF . The first is
the rigid pose conditioned NeRF (RP-NeRF) that takes the
global 3D location and the rigid transformation £ as net-
work inputs, similar to the P-NeRF defined in Eq. 8 of the
main paper. The second is RT-NeRF w/o & that estimates
the RGB color ¢ without using the transformation £ as input
in Eq. 11 of the main paper.

Dataset We create a synthetic rigid object dataset of a ren-
dered bulldozer using Blender (a software for rendering) for
experimentation. In the dataset, the object (a bulldozer) can
rigidly transform in the world coordinate system. For each
rendered image, both rigid transformation and the camera
viewpoint are randomly set. The camera will be translated
to point to the center of the object so that the object will
appear in the center of the rendered image. The resolution
for all rendered images is set to 200 x 200. In total, 480
images are used for training and another 20 images are used
for testing. The loss function is the same as in Eq. 25 of the
main paper.
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Figure A. Network architecture of Disentangled NARF in our experiments. (a) Network architecture of Fé)g and Fé)f in Egs. 22 and 23 in
the main paper, modified from the original NeRF architecture diagram. ‘4’ represents concatenation operation. (b) Network architecture
of the selector S.
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Figure B. Generative results comparison for AutoEncoder
the qualitative results are shown in Fig. C. The experimental
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Results The quantitative results are shown in Table B and

tion into the local coordinate system. In addition, the color
estimation without the transformation input is less effective.

This is concluded by comparing the results of “RT-NeRF RP-NeRF RT-NeRF w/o ¢  RT-NeRF w/ ¢
w/o £ with the results of “RT-NeRF”. Quantitatively, the
performance of “RT-NeRF w/o &” drops significantly under Figure C. Qualitative results for RT-NeRF comparison

the Mask metric in Table B. Qualitatively, the rendered im-
ages from “RT-NeRF w/o £” look blurry compared to “RT-
NeRF” in Fig. C.



[ Cost | Same pose, same view |  Novel pose, same view [ Same pose, novel view [ Novel pose, novel view
Method | #Params #FLPOS _#Memory | Mask] PSNRT SSIM{ | Mask, PSNR{T SSIMT | Mask] PSNRT SSIMT | Mask] PSNRT SSIM 7
CNN 15.6M - - 89.0 2559 0.8966 | 157.2 2470 0.8757 | 3850 2270 08213 | 3815  22.98 08243
P-NeRF | 0.85M  156M 356K | 15266 1924 05362 | 1572.1 19.60 0.5346 | 19113  18.13 04666 | 1963.2  19.08  0.4746
D-NARF | 0.66M  121M 382K | 20672 1827 0.6733 | 20602 1881 0.6706 | 20267  18.00 05983 | 20495 1882 0.6121
NARFp | 11.8M  2140M  6544K 1595 2257 08250 | 1823 2258 08211 | 1964 2132 08056 | 2050  21.80 0.8088
NARFy | 1.06M  197M 344K 201.1  22.89 0.8244 | 2251 2314 0.8205 | 2651 2148 07891 | 2751 2236 0.7961
NARFp, | LIOM  205M 382K 1234 2384 08568 | 1635 2355 08435 | 1662 2225 0.8313 | 1863 2281 0.8294
Table A. Quantitative comparison for autoencoders. Best results in bold.

Method | Mask] PSNRT SSIM 1 performed. In this case, the gradient is back-propagated to

RP-NeRF 4511.0 11.25 0.3103 all RT-NeRFs, but the Part Dependency issue arises again,

RT-NeRF w/o & 202 19.83 0.8255 which will harm the generalization ability to novel poses.

RT-NeRF 16.9 20.05 0.8388 The quantitative and qualitative results are shown in Ta-

Table B. RT-NeRF quantitative comparison. Best results in bold.

C. Additional Ablation Studies in NARF

In this section, we provide more ablation studies on the
effects of the mask loss (the second item in Eq. 25 of the
main paper), temperature parameter for NARFp (in Eq. 15
of the main paper), and softmax activation function for
NARFp (in Eq. 21 of the main paper).

W/ and w/o mask loss We conduct experiments to evalu-
ate the effect of the mask loss (the second term of Eq. 25 of
the main paper) added to the rendered mask image. While
the color loss optimizes the final RGB color of the ren-
dered pixels, the gradient from the mask loss directly opti-
mizes the densities of the 3D locations on the camera rays.
Therefore, the additional mask loss is helpful in learning 3D
shapes efficiently. The quantitative and qualitative results of
w/ and w/o mask loss are shown in Table C and Fig. D re-
spectively. In Table C, it can be seen that performances of
all the three variants of NARF drop significantly without
the mask loss, especially under the novel pose/novel view
setting. Particularly, in Fig. D, the NARFz model is not
able to converge at all without the mask loss. The NARFp
and NARFp models still work without the mask loss but
the rendered images get very blurry, especially on the back-
ground regions around the object.

Temperature parameter 7 in NARFp We study the ef-
fect of the temperature parameter 7 € (0,00) in NARFp
(in Eq. 15 of the main paper). The temperature parameter
determines how soft the selection is among the multiple RT-
NeRFs. When 7 is close to 0, hard selection is performed.
Though the Part Dependency prior is strictly satisfied in
this case, convergence in the training is difficult since the
highest current estimate will completely block the gradient
from back-propagating to the others. It is especially worse
in the early stage of the training when the highest estimate is
almost random. In turn, when 7 is close to oo, averaging is

ble C and Fig. E, respectively. We empirically use the best-
performing 7 = 100 setting as shown in Table C.

Softmax vs. sigmoid activation in NARFp In Eq. 21
of the main paper, we use softmax activation, which is also
motivated by the Part Dependency prior. Here, we provide
the results of using the sigmoid activation as an alternative.
Formally, Eq. 21 of the main paper is replaced with Eq. A:

1

1 + exp(—o?) @)

O+ (v(x"),7(9) = (o), p' =
The quantitative results are shown in Table C. In conclu-
sion, softmax outperforms sigmoid, especially in the “novel

pose/novel view” setting.

D. Implementation Details in P-NeRF

In Eq. 8 of the main paper, P-NeRF takes a global 3D
location x and the part transformations {I‘[i = 1,..., P}
as input. For implementation, we use the 6D vector se(3)
representation £ ¢ of transformation | i and concatenate them
together with x and the bone length ( as the network input.
Positional encoding is performed before the concatenation.
Formally,

FE - (v(x), {y(€)i = 1., PY,%(0),7(d)) = (o, 02]-3)

The density and color sub-networks are defined as

FE  (v(x), {7(§)]i =1,.., P},7(¢)) = (o,h), (O)
FS (b {y(&)|i=1,...,P},v(d)) — (o). (D)

E. Implementation Details in D-NaARF

D-NERF [4] uses a canonical template and learns the
observation-to-canonical deformation
U (x,w) = x (E)

where w is a deformation latent code.



Cost Same pose, same view Novel pose, same view Same pose, novel view Novel pose, novel view
Method #Params #FLPOS #Memory | Mask L2 PSNR?T SSIM7 | MaskL2 | PSNRT SSIM? | MaskL2 ]| PSNRT SSIM?T | MaskL2]| PSNR{ SSIM T
CNN 15.6M - - 76.9 29.12 0.9429 134.8 27.30  0.9211 365.9 25.19  0.8532 3922 24.53  0.8470
P-NeRF 0.85M 156M 356K 7787 2142 0.8006 1077.0 2042 0.7696 844.9 21.19  0.7897 1110.1 20.27  0.7648
D-NARF 0.66M 121M 382K 2182.6 1890  0.1143 2308.2 18.81  0.1140 21373 19.09 0.1144 2241.3 18.88  0.1133
NARFp 11.8M 2149M 6544K 92.0 2856  0.9258 116.2 26.83  0.9052 101.5 2754 09144 125.8 26.50  0.9104
NARFy 1.06M 197M 344K 55.6 2991  0.9470 376.8 24.09  0.8665 70.5 28.81  0.9370 374.6 2398  0.8646
NARFp 1.10M 205M 382K 50.5 30.86  0.9586 114.4 2793  0.9317 64.1 29.44  0.9466 123.8 27.24  0.9230
NARFp sigmoid 1.10M 205M 382K 50.8 30.74  0.9578 117.7 27.83  0.9304 64.6 29.35  0.9459 125.4 26.17 09129
NARFp32 0.32M 59M 824K 114.8 27.85 09191 139.9 26.86  0.9068 122.9 27.14 09105 147.3 25.74  0.8933
NARFp64 0.98M 178M 1641K 105.5 27.86  0.9212 126.9 26.78  0.9094 113.8 2721 09127 133.1 26.28  0.9041
NARFp128 3.28M 596M 3275K 93.8 2846  0.9284 116.1 27.15 09135 102.9 27.56 09180 1242 2623 0.9068
NARFp256 11.8M 2149M 6544K 92.0 28.56  0.9258 116.2 26.83  0.9052 101.5 27.54 09144 125.8 26.50 09104
NARFp, T = 0.01 0.32M 59M 824K 240.1 25.81  0.8730 282.0 2492 0.8541 256.0 2532 0.8624 2879 2372 0.8333
NARFp,7 = 0.1 0.32M 59M 824K 168.1 26.79  0.8995 196.7 2592 0.8863 176.1 26.26  0.8911 204.8 25.10  0.8756
NARFp, 7 =1 0.32M 59M 824K 141.5 2724 0.9077 169.9 2629  0.8949 150.9 26.56  0.8989 178.2 25.16  0.8809
NARFp, 7 =10 0.32M 59M 824K 114.8 27.85 09191 139.9 26.86  0.9068 1229 27.14 09105 147.3 2574  0.8933
NARFp, 7 = 100 0.32M 59M 824K 107.9 27.83  0.9190 130.2 26.96  0.9059 1159 2723 09117 137.5 2624  0.8983
NARFp, 7 = 1000 0.32M 59M 824K 109.0 2744 09137 130.8 26.68 09014 117.0 26.91 0.9072 138.3 26.08  0.8953
NARFp W/0 Lypask 0.32M 59M 824K 193.9 28.01 09131 220.2 2672 0.899%4 208.7 27.33  0.9028 229.8 2554  0.8792
NARFy w/0 Lyyqsk | 1.06M 197M 344K 6816.2 2425  0.7004 6893.1 21.10  0.6636 6876.3 2340  0.7029 6957.2 20.53  0.5244
NARFp w/0 Lyasr | 1.10M 205M 382K 1134 31.39  0.9630 165.7 28.09  0.9346 132.8 29.90  0.9508 263.7 2571  0.8889
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Figure D. Comparison of mask loss.

D-NERF is defined on the deformed position x’ in the
canonical template,

G:(¥(x,w),d,¥) = (0,¢) (F)

where 1) is a latent appearance code.

In our case, w and ¥ correspond to the pose configuration
‘P and the appearance latent vector z, respectively. W is
implemented using MLP, which seems to suffer from the
problem of implicit transformation. In our setup, the pose of
each part is given, so it can be implemented more directly.
In our implementation, we first use the occupancy network
similar to the one defined in Eq. 21 of the main paper to
decide which part the input point belongs to.

O = (v(x"),7(¢)) — (o), (G)
i eXP(Oi)
Ekpzl exp ok)7

Then, we calculate the coordinates x’ on the canonical

(H)

shape as
X/ = Z( v + t(ianonical) * Pi (I)

i

where t, .. is the origin of a canonical pose’s i™ part in
the global coordinate system. View direction in the canoni-
cal space and the transformation vector are defined as

d=Y"d"sp, 6= ¢*p V)

Then, the D-NARF we have implemented in the experiment
is defined as

F5¢: (4(x'),7(¢)) = (o, ), (K)

F5¢ < (h,y(d),7(£)) = (o). (L)

This implementation is similar to the implementation of
NARFp, differing only in how the coordinates are input
to the model. The results of the experiments show that a
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Figure E. Comparison of temperature 7 of NARFp.

concatenation-based NARFp model that retains the coordi-
nates for all parts is more effective than a transformation on
the input coordinates in D-NARF.

F. Training Details

We used the Adam [2] optimizer with an initial equal-
ized learning rate [1] of 0.01. The learning rate is decayed
to 0.99995x of the previous iteration. Particularly, P-NeRF
and NARFy based autoencoders are trained with an initial
learning rate of 0.001 since the training will explode if a
learning rate of 0.01 is used. The batch size is set to 16 for
all experiments. We sample as many camera rays as can be
fit in the GPU memory. The training converges at about
100,000 iterations. The training of our method NARFp
takes 24 hours on 4 V100 GPUs. The code for creating our
synthetic datasets is available at https://github.com/nogu-
atsu/NARF.

G. Cross Dataset Evaluation on SURREAL
Dataset

In order to verify the generalization ability of NARF au-
toencoder across different datasets, we use a cross dataset
evaluation protocol that trains the model on THUman
dataset [7], then tests it on SURREAL dataset [0]. There are
several differences between the THUman and SURREAL
datasets. First, even though the human samples in SUR-
REAL contain rendered SMPL meshes and textures as in
THUman, but unlike in THUman, the meshes do not con-
tain clothing. Second, the camera and shape parameters in
SURREAL, including the distance between camera and hu-
man, human pose distribution and the range of body size
are quite different from that in THUman. Even so, we test
images from the test set of SURREAL using the NARF au-
toencoder trained on THUman. The qualitative reconstruc-
tion results are shown in Fig. F. From left to right, we show
the input SURREAL images, their reconstructed images,

Input Reconstruction

Figure F. Qualitative results on SURREAL dataset. The cross
dataset protocol is used for evaluation.

and the images re-rendered under different pose configu-
rations. Since the THUman dataset is not diverse enough in
terms of clothing and body size, the reconstructions of short
pants and fat people are less effective. But the novel view
and pose rendering results look quite reasonable.

H. Experiment on Real Human Images

In this section, we test our approach on a real human
dataset ZJU-MOCAP [5]. ZJU-MOCAP is a multi-view
person video dataset. For each frame, SMPL parameters [3]
are given. We use the first 1969 frames (90%, 2185 frames
in total) of the Taichi class video for training and the re-
maining 216 frames (10%) for testing (novel pose). The
resolution of the image is 512 x 512.

The qualitative results of NARFp on this dataset are
shown in Fig. G. The left part of Fig. G shows the pose used
in the training, but rendered from novel viewpoints, and the
right part of Fig. G shows the novel pose/novel view test-
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Figure G. Results of NARFp on real human images

ing results. The quality of the rendered images is not as
good as testing on our synthetic datasets. This might be
caused by the assumption that the parts are rigid objects,
which may not be perfectly satisfied for real images. For
example, loose clothes may move when a person makes a
movement. This issue can be considered in future work,
for example, by learning latent variables to account for both
pose-dependent and pose-independent deformations similar
to Neural Body [5].

Although the quality of the rendered images for a real
person from our method still has room for improvement, we
believe that the proposed explicitly controllable representa-
tion of viewpoint, pose, bone parameters, and appearance
for the articulated object is an important contribution.
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