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1. Details About the Datasets

AFRL [3]: 300 videos of 25 participants were recorded
as 658×492 pixel images at 120 fps. Fingertip reflectance
photoplethysmograms (PPG), electrocardiograms (ECG),
and breathing signals were recorded as ground truth sig-
nals. We used the ECG signals to compute the HR estima-
tion errors, the PPG signals to train the network for estimat-
ing HR, and breathing signals for computing the errors and
training the network for BR estimation. Each participant
was recorded 12 times in each five-minute experiment with
varying motion and two different backgrounds. The partic-
ipants: 1) sat still and rested their chin on a headrest, 2) sat
still without the headrests, 3) moved their head horizontally
at a speed of 10 degrees/second, 4) 20 degrees/second, 5)
30 degrees/second, 6) reoriented their head randomly once
every second. We center-cropped the ARFL video frames
to 492×492 pixels to remove the blank background areas.

MMSE-HR [11]: 102 videos of 40 participants were
recorded at 25 fps capturing 1040 × 1392 resolution im-
ages during spontaneous emotion elicitation experiments.
Ground truth blood pressure (BP) wave was measured at
1000 fps and average HR updated after every heart beat.
We used the blood pressure waves to train the network and
the average HR to compute the HR estimation errors. 19
videos had erroneous average HR estimates, so we recom-
puted them by using the BP waveform. We detected peaks
in the blood pressure waveform and computed the inter-
beat interval (IBI) between the detected peaks. Heart rate
is estimated as 1

µ(IBI) where µ(IBI) is the mean IBI. This
dataset is more challenging than the AFRL dataset [3] be-
cause of the sudden facial motions and rapidly changing
heart rate during the experiments.

MR-NIRP (NIR) [5]: Eight participants were recorded
with a NIR camera. The videos were recorded at 640×640
resolution and 30 fps. Fingertip transmission photoplethys-
mograms were recorded as ground truth signals. Each par-
ticipant was recorded twice, once sitting still and once per-
forming motion tasks involving talking and randomly mov-

ing the head. Because the background in MR-NIRP was
not uniform, we applied face detection in the first video
frame and cropped a rectangular region with 110% width
and height of the detected bounding box. This dataset is
particularly challenging because the physiological signals
are very weak in NIR and are difficult to recover in pres-
ence of head motion [4, 8].

2. Error Metrics

To evaluate the performance of our proposed approach
we used the following four standard error measures (MAE,
RMSE, Correlation, SNR), and we defined a new measure
(Waveform MAE) to measure the waveform dynamics.

Mean absolute error (MAE):

MAE =

N∑
i=1

|Ri − R̂i|

N
(1)

where N is the total number of time windows, Ri is the
ground truth heart rate (HR) measured with a contact sensor
for each 30 second time window and R̂i is the estimated HR
from the video.

Root Mean Square Error (RMSE):

RMSE =

√√√√√ N∑
i=1

(Ri − R̂i)2

N
(2)

Pearson’s Correlation Coefficient (ρ): computed be-
tween HR estimates from each time window R̂ =
[R̂)(1), ..., R̂(N)] and the ground truth HR measurements
R = [R(1), ..., R(N)].

Signal-to-noise ratio (SNR): calculated as the ratio of
the area under the curve of the power spectrum around the
first and the second harmonic of the ground truth HR fre-
quency divided by the rest of the power spectrum within the
physiological range of 42 to 240 bpm [2]:



SNR = 10 log10

( 240∑
42

((Ut(f)S(f))2

240∑
42

((1− Ut(f))S(f))2

)
(3)

where S is the power spectrum of the estimated iPPG
signal, f is the frequency in beats per minute (BPM) and
Ut(f) is equal to one for frequencies around the first and
second harmonic of the ground truth HR (HR-6 bpm to
HR+6 bpm and 2*HR-6 bpm to 2*HR+6 bpm), and 0 ev-
erywhere else.

Waveform Mean Absolute Error (WMAE):

WMAE =

N∑
i=1

|Wi − Ŵi|

N
(4)

where Wi is the ground truth pulse waveform obtained with
the contact sensor for each 30 second time window and Ŵi

is the estimated pulse waveform from the video.

3. Implementation of Baseline Methods
We compared the performance of our proposed approach

to state-of-the-art supervised method using a convolutional
attention network (CAN) and several unsupervised meth-
ods. We implemented the CAN, CHROM, ICA, and POS
methods to evaluate them on the datasets we used.

For the CHROM, ICA and POS methods face detection
was first performed using MATLAB’s face detection
(vision.CascadeObjectDetector()). This was
fixed for all methods, to avoid the influence of the face de-
tector on performance.

CHROM [2]. This method uses a linear combination
of the chrominance signals obtained from the RGB video.
The [xR, xG, xB] signals are filtered using a zero-phase,
3rd-order Butterworth bandpass filter with pass-band fre-
quencies of [0.7 2.5] Hz. Following this, a moving window
method of length 1.6 seconds (with overlapping windows
and a step size of 0.8 seconds) is applied. Within each win-
dow the color signals are normalized by dividing by their
mean value to give [x̄r, x̄g , x̄b]. These signals are bandpass
filtered using zero-phase forward and reverse 3rd-order But-
terworth filters with pass-band frequencies of [0.7 2.5] Hz.
The filtered signals [yr, yg , yb] are then used to calculate
Swin:

Swin = 3(1− α

2
)yr − 2(1 +

α

2
)yg +

3α

2
yb (5)

Where α is the ratio of the standard deviations of the
filtered versions of A and B:

A = 3yr − 2yg (6)

B = 1.5yr + yg − 1.5yb (7)

The resulting outputs are scaled using a Hanning Window
and summed with the subsequent window (with 50% over-
lap) to construct the final blood volume pulse (BVP) signal.

ICA [6]. This approach involves spatial averaging the
pixels by color channel in the region of interest (ROI) for
each frame to form time varying signals [xR, xG, xB]. Fol-
lowing this, the observation signals are detrended. A Z-
transform is applied to each of the detrended signals. The
Independent Component Analysis (ICA) (JADE implemen-
tation) is applied to the normalized color signals.

POS [9]. The intensity signals [xR, xG, xB] are com-
puted for each camera channel. A moving window of length
1.6 seconds (with overlapping windows and with a step size
of one frame), is applied. For each time window, the signal
is divided by its mean to give [x̄r, x̄g , x̄b]. Following this,
Xs and Ys are calculated where:

Xs = x̄g − x̄b (8)

Ys = −2x̄r + x̄g + x̄b (9)

Xs and Ys are then used to calculate Swin, where:

Swin = Xs +
σ(Xs)

σ(Ys)
Ys (10)

The resulting outputs of the window-based analysis are used
to construct the final BVP signal in an overlap-add fashion.

CAN [1]. The supervised convolutional attention neural
network is described in detail in the main text [1]. Follow-
ing the implementation in that paper, we did not use face
detection but rather we pass the full frame to the network
after cropping the center portion to make the frame a square
with W=H.

Signal Pre-processing. We bandpass filtered the physi-
ological signals and corruption estimates to 0.7 Hz - 2.5 Hz
range and detrended them [7] before feeding them into the
LSTM. We set the detrending parameter λ for each dataset
based on the video frame rate (λ = 500 for AFRL [3] and
λ = 50 for MMSE-HR [11] and MR-NIRP [5]). We nor-
malized the signals and corruption estimates with AC/DC
normalization by subtracting the temporal mean and divid-
ing by the temporal standard deviation computed for each
video. We additionally normalized the amplitude range of
the signals, corruption estimates, and the ground truth sig-
nals to -1 and 1. Finally, we resampled all sequences to 30
fps.

4. Statistical Significance
We computed F-tests to verify that our errors had sig-

nificantly lower variance (spread) than the baselines. For
AFRL and MR-NIRP which had longer videos, we com-
puted the error metrics for each video, and for the shorter
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MMSE-HR, we computed them for all time windows in the
dataset. In addition to lower mean errors, for all datasets,
our approach led to a significantly lower spread in the HR
and BR MAE and RMSE. AFRL (300 videos): HR MAE: F
= 0.54, p < 0.01, HR RMSE: F = 0.56, p < 0.01, BR MAE:
F = 0.36, p < 0.01, BR RMSE: F = 0.48, p < 0.01, MMSE-
HR (131 windows): MAE: F = 0.26, p < 0.01, RMSE: F =
3.92 p < 0.01, MR-NIRP (15 videos): MAE F = 7.94 p <
0.01, RMSE F = 6.63, p < 0.01.

5. Attention Masks

Figure 1. Averaged attention
mask for stationary AFRL
videos.

We show the averaged
attention masks for AFRL
Task 2 in Fig. 1 to illustrate
that the masks usually fo-
cus on skin (forehead and
cheeks) where the iPPG
signal is dominant. As we
train the network with the
PPG/respiration signals as
the training label, instead
of the average HR/BR fre-
quency, it is much more
likely the learned atten-
tion masks will capture re-
gions containing PPG sig-

nals rather than other physiological information, such as
the BCG signals. Past work has also experimentally veri-
fied that the convolutional attention networks indeed learn
the PPG signals instead of BCG [10]. Moreover, the BCG
signals tend to be more evenly distributed and concentrated
around the edges of the face. However, the learned attention
masks focus predominantly on the skin pixels with strong
PPG signals.

6. Additional Results

Corruption Definition. We compared the performance
of our proposed denoising framework with corruption chan-
nels computed from a single red, green or blue camera chan-
nel to using all three R, G, B channels. We hypothesized
that the blue channel might be the best one for the corrup-
tion representation for the physiological signals because the
hemoglobin present in blood has the lowest absorption in
the blue light spectrum and its intensity variations would be
the least related to blood flow. Conversely, the green chan-
nel could also be a useful corruption representation, because
it would contain information most similar to the physiolog-
ical signals since the hemoglobin has the largest absorption
in the green spectrum. However, we found that there is not
a large difference between using any one of the single chan-
nels or all three channels. We report the detailed results in
Table 1 on the AFRL dataset [3].

Inverse Mask Definition. We also compared comput-
ing the corruptions using a binary and a continuous inverse
attention mask. The continuous mask was computed as a
matrix of continuous values in which each element of the
inverse maskM ,Mi,j , was 1 -Ai,j whereA is the attention
mask weights normalized from 0 to 1. The binary mask was
computed by thresholding these values, where A′

i,j = 1, if
Ai,j >T, where T is a threshold from 0 to 1. We found that
we obtained comparable results with the binary and contin-
uous masks as shown in Table 1.

Table 1. Different Inverse Mask Definitions on AFRL [3]. There
was no systematic benefit of using R, G, B or RGB inputs or using
the binary vs. continuous mask. We used the binary mask with
RGB inputs for the results shown in the main paper.

AFRL (All Tasks) [3]
Method MAE RMSE SNR ρ WMAE

Ours (LSTM RGB Binary Mask) 2.25 5.68 6.44 0.87 0.21
Ours (LSTM Red Binary Mask) 2.09 5.19 6.70 0.89 0.21

Ours (LSTM Green Binary Mask) 2.04 5.11 6.84 0.89 0.21
Ours (LSTM Blue Binary Mask) 2.18 5.27 6.59 0.88 0.21

Ours (LSTM RGB Continuous Mask) 2.10 5.61 7.11 0.87 0.20

Different Distraction Regions. We compared sepa-
rately using corruption estimates from distraction regions
closer to the face (“Center” of the frames) and further from
the face (“Edges” of the frames). We used an LSTM model
trained on all ignored regions for this experiment. When
the motion was small, all regions contributed similarly to
denoising. But when there was large head motion, regions
close to the head (center of the frames) helped the most. See
Table 2.

Table 2. Different Distraction Regions on AFRL [3]
MAE BVP SNR

Region 1 2 3 4 5 6 1 2 3 4 5 6
Edges 1.07 2.10 1.92 2.10 2.68 8.74 10.52 7.23 8.59 6.04 3.07 -5.83
Center 1.08 2.11 1.75 2.00 2.43 6.53 10.50 7.28 8.72 6.33 3.89 -4.47

Performance across Different Skin Types. We have
also broken down the results on MMSE-HR by skin type,
where dark skin types (V - VI) are also more challenging
because they have lower PPG SNR (Table 3). Our method
achieves better performance across all skin types.

Table 3. Fitzpatrick Skin Types II - VI on MMSE-HR
Heart Rate MAE Heart Rate SNR

Method II III IV V VI II III IV V VI
Distraction 1.44 2.59 1.23 11.62 1.57 7.08 6.57 6.66 -8.57 -3.28

No Corr. 1.94 2.77 1.31 12.79 8.75 5.91 7.06 5.79 -11.25 -4.18
CAN 1.84 3.70 2.89 18.83 8.77 3.25 2.74 1.29 -15.28 -10.35

Performance on Subjects with Glasses. We compared
the performance of our denoising approach and the base-
line CAN method on subjects with and without glasses. We
found that our method offers the largest improvements on
subjects with glasses, as shown in Table 4. However, the
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Figure 2. Comparison of attention masks and inverse attention
masks on a video with and without glasses.

attention masks output by CAN on subjects with and with-
out glasses were comparable, as shown in Figure 2. Nine of
the 25 subjects in the AFRL dataset were wearing glasses.
No subjects in the MMSE-HR or MR-NIRP datasets were
wearing glasses.

Table 4. Subjects with Glasses from AFRL [3]
Method MAE RMSE SNR ρ WMAE

Ours (LSTM) with Glasses 2.17 4.55 7.33 0.87 0.21
CAN with Glasses 3.33 6.56 3.80 0.76 0.24

Ours (LSTM) no Glasses 2.55 5.79 4.68 0.59 0.20
CAN no Glasses 2.57 5.13 2.50 0.66 0.22
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