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S1. Details of RS Loss

N9

In this section, we present the derivations of gradients
and obtain the loss value and gradients of RS Loss on an
example in order to provide more insight.

S1.1. Derivation of the Gradients

The gradients of a ranking-based loss function can be
determined as follows. Eq. 3 in the paper states that:
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Our identity update reformulation suggests replacing Az;;
by L;; which yields:
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We split both summations into two based on the labels of

the examples, and express % using four terms:
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Then simply by using the primary terms of RS Loss, defined
in Eq. 9 in the paper as:
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With the primary term definitions, we obtain the gradients
of RS Loss using Eq. S3.

Gradients for i € N. For i € N, we can respectively
express the four terms in Eq. S3 as follows:
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* > Lj;; = 0 (no negative-to-negative error is defined
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for RS Loss — see Eq. S4),

* > L;; = 0 (noerror when j € P andi € N for L;;
JEP
—see Eq. S4),

* > L;; = 0 (no negative-to-negative error is defined
JEN
for RS Loss — see Eq. S4),



which, then, can be expressed as (by also replacing Z = |P|
following the definition of RS Loss):
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concluding the derivation of the gradients if i € \.
Gradients for © € P. We follow the same methodology for
1 € P and express the same four terms as follows:
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Combining these four cases together, we have the following
gradient for i € P:
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Input id, i (i € P is underlined) [o]1]2]3]a]s5]s]7]

(a) Input of RS Loss (positive if y; > 0; else negative)
[3.00[2.00[1.00]0.00]-1.00[-2.00:3.00]-4.00]
[0.90]0.40]0.00]0.00]0.80]0.00]0.10] 0.00]

Logits, s;

Labels, y;

(b) Current&target error and RS Loss on each i € P (N/A: negatives, bold: non-zero loss)

Current ranking error, €5 (i)

Current sorting error, £5(i) 0.10]0.35

Target ranking error, £ (i) 0.00(0.00 | N/A [N/A|0.00 | N/A | 0.

lo; Jo4o]na]o.

l Jo30[n/A]

l l l
Target sorting error, £5(i) [0.10]0.35]n/A[NAo.15[N/A .

l l l

l l l

l l l

l [N l l

Jo.00]nA] l l

Jo3s]nA] [vaoss]
Ranking Loss, £z (i) — 24 (i) 0.00[0.00]N/A[N/A 040 [N/A 042 NiA
Sorting Loss, £5(i) — £5(i) 0.00]0.00[N/A[N/A 015 [N/Ao.00[N/A
Total Loss, (£x(1)+£5(i)) — (¢r(0) + £5(D) [0.00[0.00[N/A[N/Ao.s5]N/a0.42]Na

RS Loss, Lgs (average over total losses) : 0.24

Figure S1. An example illustrating the computation of RS Loss.
(a) The inputs of RS Loss are logits and continuous labels (i.e.
IoU). (b) Thanks to the “Identity Update” (Section 3.2 in the pa-
per), the loss computed on each example considers its target error,
hence, it is interpretable. E.g. ¢ = 0, 1,6 have positive current
sorting errors, but already sorted properly among examples with
larger logits, which can be misleading when loss value ignores the
target error. Since RS Loss is computed only over positives, N/A
is assigned for negatives.

Finally, for clarity, we rearrange the terms also by using

s () = trs (i) = —=(ls(4) — £5(2)) — (IR (1) — LR (2)):
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concluding the derivation of the gradients when i € P.

S1.2. Insights on the Computation of RS Loss and
its Gradients on an Example

In Fig. S1, we illustrate the input and the computation of
RS Loss. We emphasize that our Identity Update provides
interpretable loss values when the target value is non-zero
(Fig. S1(b)). Previous work [2, 13] fail to provide inter-
pretable loss values.

Computation of the Loss. To compute the loss follow-
ing the three-step algorithm in the paper, the first and the
third steps are trivial (Fig. 2 in the paper), thus, here we
present in Fig. S2 (a) how the primary terms (L;;) are com-
puted for our example (Fig. S1) following Eq. S4.

Optimization of the Loss. Fig. S2(b) presents and dis-
cusses the gradients obtained using Eq. S5, S16.

S2. Analyses

Section S2.1 presents our experiments to validate our de-
sign choices and Section S2.2 discusses the drawbacks of
aLLRP Loss, and how we fix them.



(a) Obtaining Primary Terms

Primary terms of i=4
Current Errors | £5(4) = 0.40 £5(4) = 0.30

Primary terms of i=6
2r(6) = 0.43 £5(6) = 0.38

TargetRanking| [ 0 [ 4 [ 1 [ 2 [ 3 [foJ4]1Je[2]3]5]
Target Errors | £3(4) = 0.00 £5(4) = 0.15 £5(6) = 0.00 £5(6) = 0.38

PrU1D [0.00]0.00]0.50]0.50]0.00] [[[0.00]0.00]0.33]0.33] 0.00] 0.33] 0.00]
D) [0.00[1.00]0.00]0.00]0.00] | [0.00]0.00]0.00]0.00]0.00] 0.00]0.00]
B [0.00]0.15]0.20]0.20]0.00] || 0.00] 0.00]0.14] 0.14] 0.00]0.14] 0.00]

(b) Gradients of RS Loss

[0.00 |o.:5|0.34|0.34 Foss[oafoa[0.00] [ Promoteiic. 35 <0

[] Demote, i.e.Z—L >0
A positive with a high logit but small Si
label will be demoted.

Figure S2. An example illustrating the computation of primary
terms in RS Loss. (a) The computation of primary terms. We
only show the computation for positives ¢ = 4 and ¢ = 6 since for
i = 0and ¢ = 1 the total loss is O (see Fig. S1(b)); and RS Loss
does not compute error on negatives by definition (i.e. discretizes
the space only on positives). To compute primary terms, L;;, one
needs current errors, target errors and pmfs for both ranking and
sorting, which are included in the figure respectively. In order to
compute the target errors on a positive ¢ € P, the examples are first
thresholded from s; and the ones with larger (i.e. s; > s;) logits
are obtained. Then, target rankings are identified using continu-
ous labels. The ranking and sorting errors computed for the target
ranking determines target errors, {3 (¢) and £5(z). The ranking
and sorting losses, ¢r (i) — ¢ (i) and £s(i) — £5(4) respectively,
are then distributed over examples causing these losses uniformly
via pmfs ps(j]¢) and pr(j|i) to determine pairwise errors, i.e.
primary terms. (b) The gradients are obtained simply by using
primary terms as the update in Eq. S1 following identity update
yielding Eq. S5 and S16 for negatives and positives respectively.
Thanks to the novel sorting objective, RS Loss can assign a gra-
dient to suppress a positive example when it is not ranked among
positives accordingly wrt its continuous label (e.g. ¢ = 1).

S2.1. Analysis to Determine Design Choices in Lo-
calisation Loss

In this section, we provide our analysis on ATSS [21]
to determine our design choices for localisation. First, as
a baseline, we train ATSS network with the following loss
function:

Lrs—arss = Lrs + Aoz Lo, (S17)

where Lgg is our Rank & Sort Loss, A, is the task-level
balancing coefficient and Ly, is the box regression loss.
First, we investigate two tuning-free heuristics
to determine Ay, every iteration: (i) value-based:
Moz = Lgrs/Lpox» and (i) magnitude-based:

Xooz = ‘ag% /‘%‘ where |-| is L1 norm, b and
s are box regression and classification head outputs respec-
tively. Table S1 presents that value-based task balancing

performs similar to tuning Ay, (~ 0 AP on average).

Table S1. Comparison of instance- and task-level weighting meth-
ods on RS-ATSS. Instance-level importance weighting methods
yield similar performance and value-based SB achieves similar
performance with constant weighting. Thus, we use score-based
weighting and value-based SB with RS Loss (underlined&bold),
which are both tuning-free.

Task-level balancing coefficient (\,)
Instance-level importance |Constant weighting | Self-balance (SB)
weight (w?) 1 [ 2 | 3 [value] magnitude
No prioritization 38.9(39.7| 39.7 | 39.7 39.4
Centerness-based [ 18] 38.8139.8| 39.6 | 39.6 39.5
Score-based [7] 39.1139.8| 39.7 |39.9 39.7
ToU-based [6] 39.0(39.7| 39.8 | 39.7 39.6
Ranking-based [13] 39.1139.9| 39.6 |39.9 39.6

Secondly, we delve into Lp,;, which is defined as the
weighted average of the individual losses of examples:

1

Loow =Y %ﬁcw(bﬁ, b), (818

i€EP jer
where EGIoU(lA)i, b;) is the GloU Loss [16], and w’ is the
instance-level importance weight. Unlike no prioritization
(i.e. w* = 1fori € P), recently, a diverse set of heuris-
tics assigns different importances over ¢ € P: centerness-
based importance [18, 21] aims to focus on the propos-
als (i.e. point or anchor) closer to the center of b;, score-
based heuristic [7] uses the maximum of confidence scores
of a prediction as w’, IoU-based approach [6] increases the
losses of the predictions that are already better localized by
w' = ToU(b;, b;), and finally ranking-based weighting [13]

usesw' = & [ X H(@pi)

P rank(k) |» Where H(-) can be smoothed
P

by an additional hyper-parameter (J;,.). Note that these
instance-level weighting methods perform similarly (largest
gapis 0.2 AP —Table S1) and we prefer score-based weight-
ing with RS Loss.

S2.2. A Comparative Analysis with alLRP Loss

In this section, we list our observations on aLRP Loss
[13] based on our comparative analysis with RS Loss:

Observation 1: Tasks competing with each other
within the bounded range of aLRP Loss degrades per-
formance especially when the models are trained 12
epochs following the common training schedule.

To illustrate this, we train Faster R-CNN [15] with aLRP
Loss and our RS Loss using two different settings:

e “Standard Training”, which refers to the common
training (e.g. [15, 18, 21]): The network is trained by
a batch size of 16 images with resolution 1333 x 800
without any augmentation except the standard horizon-
tal flipping. We use 4 GPUs, so each GPU has 4 im-
ages during training. We tune the learning rate of aLRP



Table S2. Due to epoch-based self-balance and competition of
tasks for the limited range, aLRP Loss performs significantly
worse in the first epoch. When the model is trained longer using
heavy training (i.e. 100 epochs, SSD-style augmentation [12]),
the default configuration of aLRP Loss, the performance gap rel-
atively decreases at the end of training, however, the gap is still
significant (~ 2 AP) for the standard training (i.e. 12 epochs, no
SSD-style augmentation [12]). All experiments are conducted on
Faster R-CNN.

Loss Heavy Training | Standard Training

Function Epoch 1 |Epoch 100 |Epoch 1 |Epoch 12
aLRP Loss [13]| 9.4 40.7 14.4 37.4
RS Loss 17.7 41.2 22.0 39.6

Loss as 0.009 and for our RS Loss we set it to 0.012.
Consistent with the training image size, the test image
size is 1333 x 800.

» “Heavy Training”, which refers to the standard training
design of alLRP Loss (and also AP Loss): The network
is trained by a batch size of 32 images with resolution
512 x 512 on 4 GPUs (i.e. 8 images/GPU) using SSD-
syle augmentation [12] for 100 epochs. We use the ini-
tial learning rate of 0.012 for aLRP Loss as validated
in the original paper, and for our RS Loss, we sim-
ply use linear scheduling hypothesis and set it to 0.024
without further validation. Here, following alLRP Loss
(and AP Loss), the test image size is 833 x 500.

Table S2 presents the results and we observe the follow-
ing:

1. For both “heavy training” and “standard training”,
aLRP Loss has significantly lower performance after
the first epoch (17.7 AP vs. 9.2 AP for heavy training
and 22.0 AP vs. 14.4 AP) compared to RS Loss: aLRP
Loss has a bounded range between 0 and 1, which is
dominated by the classification head especially in the
beginning of the training, and hence, the box regres-
sion head is barely trained. To tackle that, Oksuz et
al. [13] dynamically promotes the loss of box regres-
sion head using a self-balance weight, initialized to 50
and updated based on loss values at the end of every
epoch. However, we observed that this range pressure
has an adverse effect on the performance especially at
the beginning of the training, which could not be fully
addressed by self-balance since in the first epoch the
SB weight is not updated.

2. While the gap between RS Loss and aLRP Loss is 0.5
AP for “heavy training”, it is 2.2 AP for “standard
training”. After the SB weight of aLRP Loss is up-
dated, the gap can be reduced when the models are
trained for longer epochs. However, the final gap is
still large (~ 2 AP) for “standard training” with 12

epochs since unlike alLRP Loss, our RS Loss (i) does
not have a single bounded range for which multiple
tasks compete, and (ii) uses an iteration-based self-
balance instead of epoch-based.

Observation 2: The target of aLRP Loss does not
have an intuitive interpretation.

Self-balance (or range pressure — see Observation 1) is
not the single reason why RS Loss performs better than
aLLRP Loss in both scheduling methods in Table S2. aLRP
Loss uses the following target error for a positive example
1

* N glOC(i)
aLRP(Z) - rank(i)’ (519)
where
Eoe(i) = M7 (S20)

1—7

and 7 is the positive-negative assignment threshold. How-
ever, unlike the target of RS Loss for specifying the error at
the target ranking where positives are sorted wrt their IoUs
(see Fig. S2), the target of aLRP Loss does not have an
intuitive interpretation.

Observation 3: Setting 7 in Eq. S20 to the value of
the positive-negative (anchor IoU) assignment thresh-
old creates ambiguity (e.g. anchor-free detectors do not
have such a threshold).

We identify three obvious reasons: (i) Anchor-free meth-
ods do not use IoU to assign positives and negatives, (ii) re-
cent SOTA anchor-based methods, such as ATSS [21] and
PAA [6], do not have a sharp threshold to assign positives
and negatives, but instead they use adaptive thresholds to
determine positives and negatives during training, and fur-
thermore (iii) anchor-based detectors split anchors as pos-
itives and negatives; however, the loss is computed on the
predictions which may have less IoU with ground truth than
0.50. Note that our RS Loss directly uses IoUs as the con-
tinuous labels without further modifying or thresholding
them.

Observation 4: Using an additional hyper-parameter
(9;0¢) for ranking-based weighting yields better perfor-
mance for the common 12 epoch training.

As also discussed in Section S2.1, ranking-based impor-
tance weighting of the instances corresponds to:

v |P] ];)rank(kz) ' (521)

aLRP Loss, by default, prefers not to smooth the nominator
(H(zg;)) but rank(k) is computed by the smoothed unit-
step function. We label this setting as “default” and intro-
duce an additional hyper-parameter ¢;,. to further analyse



Table S3. Using an additional d;,. to smooth the effect of ranking-
based weighting can contribute to the performance.

d10c || 0.00 | 0.50 | 1.00 | 1.50 | 2.00 | Default
AP || 39.3 | 39.4 | 39.8 | 39.9 | 39.8 39.5

Table S4. We set 6rs = 0.50, the only hyper-parameter of RS
Loss, in all our experiments.

drs || 0.25 | 0.40 | 0.50 | 0.60 | 0.75 | 1.00
AP ] 39.0 | 39.7 | 39.9 | 39.7 | 39.8 | 394

Table S5. RS Loss improves strong baseline Cascade R-CNN [1].

Method AP 1| APso 7| AP75 T | oLRP |
Cascade R-CNN 40.3 | 58.6 44.0 67.0
RS Cascade R-CNN || 41.3 | 58.9 44.7 66.6

ranking-based weighting. Note that the larger ;.. is, the
less effect the logits will have on w’ (Eq. S18). In Ta-
ble S3, we compare these different settings on RS-ATSS
trained for 12 epochs with our RS Loss, and observe that
the default ranking-based weighting can be improved with
different d;,. values. However, for our RS Loss, we adopt
score-based weighting owing to its tuning-free nature.

S3. More Experiments on RS Loss

This section presents the experiments that are omitted
from the paper due to space constraints.

S3.1. Effect of i rs, the Single Hyper-parameter, for
RS Loss.

Table S4 presents the effect of dpg on RS Loss using
ATSS. We observe similar performance between drg =
0.40 and §rs = 0.75. Also note that considering positive-
to-positive errors in the sorting error, we set drg different
from AP Loss and aLRP Loss, both of which smooth the
unit step function by using dps = 1.00 as validated by Chen
etal. [2].

S3.2. Training Cascade R-CNN [1] with RS Loss

Table S5 shows that using RS Loss to train Cascade R-
CNN (RS-Cascade R-CNN) also improves baseline Cas-
cade R-CNN by 1.0 AP. We note that unlike the conven-
tional training, we do not assign different loss weights over
each R-CNN.

S3.3. Hyper-parameters of R-CNN Variants in Ta-
ble 1 of the Paper

A two-stage detector that uses random sampling and
does not employ a method to adaptively set AF has at least 7
hyper-parameters since (i) for random sampling, one needs
to tune number of foreground examples and number of
background examples to be sampled in both stages (4 hyper-
parameters), and (ii) at least 3 )\f s need to be tuned as the

task-balancing coefficients in a loss with four components
(Eq. 1 in the paper). As a result, except aLRP Loss and
our RS Loss, all methods have at least 7 hyper-parameters.
When the box regression losses of RPN and R-CNN are L1
Loss, GIoU Loss or AutoLoss, and the network has not an
additional auxiliary head, 7 hyper-parameters aree sufficient
(i.e. GloU Loss [16], Carafe FPN [19] and AutoLoss-A
[11]). Below, we list the methods with more than 7 hyper-
parameters:

e FPN [&] uses Smooth L1 in both stages, resulting in
2 more additional additional hyper-parameters (/3) to
be tuned for the cut-off from L2 Loss to L1 Loss for
Smooth L1 Loss.

e ToU-Net [5] also has Smooth L1 in both stages. Be-
sides, there is an additional IoU prediction head trained
also by Smooth LI, implying A\F for ToU predic-
tion head and 8 for Smooth L1. In total, there are
7 hyper-parameters in the baseline model, and with
these 4 hyper-parameters, IoU-Net includes 11 hyper-
parameters.

e To train R-CNN, Libra R-CNN [14] uses IoU-based
sampler, which splits the negatives into IoU bins with
an IoU interval width of «, then also exploits random
sampling. Besides it uses Balanced L1 Loss which
adds 2 more hyper-parameters to Smooth L1 Loss (3
hyper-parameters in total). As a result, Libra R-CNN
has 11 hyper-parameters in sampling and loss function
in total.

* Dynamic R-CNN [20] uses Smooth L1 for RPN and
adds one more hyper-parameter to the Smooth L1, re-
sulting in 3 additional hyperparameters. As a result, it
has 10 hyper-parameters.

S3.4. Using Different Localisation Qualities as Con-
tinuous Labels to Supervise Instance Seg-
mentation Methods

In order to provide more insight regarding the employ-
ment of continuous labels for the instance segmentation
methods, we train YOLACT under four different settings:
(i) without using continuous labels (c.f. “Binary” in Table
S6) (ii) using IoU, the bounding box quality, as the continu-
ous label (iii) using Dice coefficient, the segmentation qual-
ity, as the continuous label and (iv) using the average of IoU
and Dice coefficient as the continuous label. Table S6 sug-
gests that all of these localisation qualities improve perfor-
mance against ignoring them during training. Therefore, we
use IoU as the continuous ground truth labels in all of our
experiments with the exception of RS-SOLOV2, in which
we used Dice coefficient, yielding similar performance to
using IoU (Table S6), since SOLOvV2 does not have a box
regression head.



Table S6. Analysis whether using continuous labels is useful for
instance segmentation. We use IoU to supervise instance seg-
mentation methods except SOLOV2, in which we use Dice coeffi-
cient since bounding boxes are not included in the output. Using
Dice coefficient also provides similar performance with IoU. Bi-
nary refers to the conventional training (i.e. only ranking without
sorting) without continuous labels.
Label Segmentation Detection
AP [APs5¢ | AP75|| AP |AP5 | APy
Binary 29.1|49.9 | 294 || 32.9| 53.8 | 34.2
TIoU 29.9|50.5|30.6(33.8| 54.2 354
Dice 29.8 | 50.4 | 30.2 || 33.5|54.3 | 35.1
(IoU+Dice)/2 | 29.6 | 50.2 | 30.0 || 33.4| 54.1 | 34.8

S3.5. Details of the Ablation Analysis on Different
Degrees of Imbalance

This section presents details on the discussion on robust-
ness of RS Loss to imbalance (Section 6.3 in the paper).

Experimental Setup. Using RS Loss on multi-stage vi-
sual detectors (e.g. Faster R-CNN or Mask R-CNN) in-
volves two major changes in the training pipeline:

1. The random samplers from both stages (i.e. from RPN
and R-CNN) are removed.

2. The O + 1-way softmax classifier, where O is the
number of classes in the dataset, is replaced by O bi-
nary (i.e. class-wise) sigmoid classifiers for the second
stage of Faster R-CNN (i.e. R-CNN)'.

Note that in order to present the actual imbalance ratio
between positives (pos) and negatives (neg), one needs to
track the actual fask ratio resulting from the binary sigmoid
classifiers. That is, with O individual binary sigmoid clas-
sifiers, each positive instance (e.g. anchor, proposal/region-
of-interest) yields 1 pos and O — 1 neg tasks, and each neg-
ative instance yields O negative tasks (also refer to Section
3.1 of Tan et al. [17] for details). To illustrate (Table S7),
when we aim 1:3 pos:neg instance ratio for R-CNN by us-
ing a random sampler, as conventionally done, the actual
instance pos:neg ratio turns out to be 1:8 since the sampler
pads the fixed batch size (i.e. in terms of proposals/regions-
of-interest, which is 256 in this case) with negative in-
stances when there is no enough positives. On the other
hand, the actual task pos:neg ratio is 1:702, implying that
the pos:neg ratio of instances is not representative. As a re-
sult, we consider the actual task pos:neg ratio as the actual
imbalance ratio.

Robustness of RS Loss to Imbalance. In order to show
that RS Loss is robust to different degrees of imbalance
without tuning, we trained (i) three Faster R-CNN [15] on

INote that RPN, which aims to determine “objectness”, is already im-
plemented by a single sigmoid classifier in mmdetection [3]. Hence, no
modification is required for the classifier of RPN.

COCO dataset [ 10] by gradually removing the random sam-
pler from both stages and also (ii) one Mask R-CNN on
LVIS dataset [4] as an extremely imbalanced case. Table
S7 presents pos:neg instance and task ratios averaged over
the iterations during the first epoch?:

* When the random samplers are removed from both
stages, the actual pos:neg task ratio increases. Specif-
ically, due to the large number of anchors used for
training RPN, actual pos:neg task ratio increases sig-
nificantly for RPN (from 1:7 to 1:6676). As for R-
CNN, this change is not as dramatic as RPN on COCO
dataset after the sampler is removed (from 1:702 to
1:1142 — compare “Random” and “None” for R-CNN
in Table S7) since R-CNN is trained with top-1000
scoring region-of-interests (instead of all anchors in
RPN) and COCO dataset has 80 classes. Note that RS
Loss can train all three configurations (whether ran-
dom sampling is removed or not) for COCO dataset
successfully, and when more data is available (i.e.
sampler is “None”), the performance improves from
38.5 to 39.6.

* When we train Mask R-CNN using RS Loss on the
long-tailed LVIS dataset without any samplers, we
observed that unlike COCO dataset, R-CNN training
is extremely imbalanced (actual pos:neg task ratio is
1:10470) due to the large number of classes in LVIS
dataset. Still, our RS Loss achieves SOTA perfor-
mance despite this extreme imbalance (see also Table
5 in the paper).

As a result, we conclude that RS Loss can easily be in-
corporated to train data with different levels of imbalance.

Are Score-based Loss Functions Robust to Imbalance
Without Tuning? Here, we investigate how Cross-entropy
Loss and Focal Loss behave when samplers are removed
without any tuning.

Cross-entropy Loss. As a fair baseline for our RS Loss,
we use Faster R-CNN with GIoU Loss and only remove
random sampling gradually similar to how we did for RS
Loss. Table S8 shows that, as opposed to our RS Loss,
the performance significantly drops once the samplers are
removed for Cross-entropy Loss, and hence Cross-entropy
Loss cannot be directly employed to train different levels of
imbalance unlike our RS Loss.

Focal Loss. There are many design choices that one
needs to tune in order replace the standard Cross-entropy
Loss by Focal Loss. Here, instead of tuning each of these

2Note that since the anchors, fed to the first stage (i.e. RPN), are fixed
in location, scale and aspect ratio during the training, the imbalance ratios
in the first epoch also applies for all epochs for RPN; on the other hand, for
R-CNN the number of negatives for each positive may increase in the latter
epochs since the RPN will be able to classify and locate more objects.



Table S7. Ablation with different degrees of imbalance. Positive:negative (pos:neg) ratios averaged over the iterations of the first epoch of
training with RS Loss on different datasets & samplers. For each pos instance, e.g. anchor, random sampler aims to sample 1 neg instance
in RPN and 3 neg instance in R-CNN. With no sampler (None), there is no desired pos:neg instance ratio, i.e. not available - N/A. Note that
when random sampler cannot find enough pos, the batch is padded with neg; accordingly, actual pos:neg instance ratio is computed after
this padding. Since we use binary sigmoid classifiers on R-CNN; each neg instance has O neg tasks, and each pos instance has 1 pos and
O — 1 neg tasks where O is the number of dataset classes. Using this, actual pos:neg task ratio (underlined) presents the actual imbalance
ratio in the input of RS Loss. Quantitatively, the actual pos:neg task ratio varies between 1:7 to 1:10470. Despite very different degrees of
imbalance, our RS Loss outperforms all counterparts without sampling and tuning in both datasets.

Dataset Sampler desired pos:neg instance ratio | actual pos:neg instance ratio | actual pos:neg task ratio AP
RPN | R-CNN |RPN R-CNN RPN R-CNN RPN R-CNN

Random | Random | 1:1 1:3 1:7 1:8 1:7 1:702 38.5

COCO | None |Random| I:1 N/A 1:6676 1:8 1:6676 1:702 39.3

None None | N/A N/A 1:6676 1:13 1:6676 1:1142 39.6

LVIS | None | None |N/A N/A 1:3487 1:12 1:3487 1:10470 25.2

Table S8. RS Loss is robust to class imbalance while score-based
loss functions cannot handle imbalanced data in this case. RS
Loss successfully trains Faster R-CNN with both relatively bal-
anced (“Random” sampling) and severely imbalanced (“None” in
the table) data. Numbers in parentheses show positive to negative
ratio of sampled examples.

Loss RPN |R-CNN | AP |APs5o|AP75
Random | Random || 37.6 | 58.2 | 41.0

Cross-entropy | None |Random || 32.7 | 49.4 | 35.9
None None | 30.1| 45.3 | 33.2

Random | Random || 31.8 | 47.4 | 35.0

Focal Loss [9] | None |Random || 32.0 | 47.5 | 35.1
None None | 30.7 | 44.6 | 34.2

Random | Random || 38.5 | 58.5 | 41.5

RS Loss (Ours) | None |Random/| 39.3|59.6 | 42.3
None None |/39.6| 59.5 | 43.0

extensively, we use a commonly used setting in one-stage
detectors [7, 9, 21] to train RPN and R-CNN. In particu-
lar, we use individual class-wise binary sigmoid classifier
(as we also did for RS Loss), set the learning rate to 0.01,
the weight of GIoU Loss to 2 and the bias terms in the last
layer of the classification head® such that the confidence
scores of the positives are 0.01 to prevent destabilization
of the training due to large loss value originating from neg-
atives. However, we observed that Focal Loss is not able to
perform as good as Cross-entropy Loss and RS Loss with
this configuration (Table S7). Hence, as a generalisation of
Cross-entropy Loss, Focal Loss at least needs to be tuned
carefully in order to yield better performance.

As a result, we conclude that common score-based loss
functions (i.e. Cross-entropy Loss and Focal Loss) cannot
handle different degrees of imbalance without tuning; while
our RS Loss can.

3Note that we also do not tune this bias term for our RS Loss and use
the default setting for all the detectors that we train.

S3.6. Effect of RS Loss on Efficiency

We discuss the effect on efficiency on two levels: (i)
training and (ii) inference.

S3.6.1 Effect on Training Efficiency

Similar to other ranking based loss functions (i.e. AP Loss
[2] and aLRP Loss [13]), RS Loss has also quadratic time
complexity, and as a result, one training iteration of RS Loss
takes 1.5x more on average (Table S9).

S3.6.2 Effect on Inference Efficiency

We observed that the methods trained by RS Loss yield
larger confidence scores than the baseline methods, which
are trained by score-based loss functions (e.g. Cross-
entropy Loss). As aresult, for inference efficiency, the score
threshold to discard detections associated with background
before Non-Maximum Suppression (NMS) should be set
carefully*. Here, we provide examples using multi-stage
visual detectors on two datasets:

¢ COCO dataset. Faster R-CNN and Mask R-CNN
use 0.05 as the confidence score threshold on COCO
dataset when they are trained by Cross-entropy Loss,
that is, all the detections with confidence score less
than 0.05 are regarded as background (i.e. false posi-
tive), and they are simply removed from the detection
set before NMS. Keeping this setting as 0.05, RS-R-
CNN with ResNet-50 reaches 39.6 AP and 67.9 oLRP
but with slower inference time than the baseline Cross-
entropy Loss, which has 21.4 fps. Then, tuning this
score threshold to 0.40, Faster R-CNN trained by our
RS Loss performs exactly the same (see 39.6 AP and
67.9 oLRP in Table S9) at 22.5 fps, slightly faster
than the baseline Faster R-CNN. Table SO presents the
results on Faster R-CNN and Mask R-CNN with the

4We keep the default settings of the methods in the paper



Table S9. Average iteration time of methods trained by the stan-
dard loss vs. RS Loss. On average, training with RS Loss incurs
~ 1.5x longer time due to its quadratic time complexity similar

to other existing ranking-based loss functions [2, 13].

Method Standard Loss (sec) | RS Loss (sec)

Faster R-CNN 0.42 0.82

Cascade R-CNN 0.51 2.26

ATSS 0.44 0.70

PAA 0.57 0.99

Mask R-CNN 0.64 1.04

YOLACT 0.57 0.59

SOLOv2-light 0.64 0.90

tuned confidence score threshold, that is 0.40. While
the performance of models in Table S9 in terms of
oLRP is always equal to the ones with confidence score
of 0.05, in some rare cases we observed negligible per-
formance drop (i.e. up to 0.01 AP points, e.g. RS
Faster R-CNN+ drops from 40.8 AP to 40.7 AP).

LVIS dataset. Table S11 presents the results of Mask
R-CNN on LVIS dataset. Similar to COCO dataset,
when we use RS Loss, we prefer a larger confidence
score threshold, that is 0.60, and also we observe that
RS Loss is robust to this threshold choice, while the
performance of the standard Mask R-CNN degrades
rapidly when the score threshold increases. As a re-
sult, when the score threshold is set accordingly, our
RS-Mask R-CNN yields 25.2 AP at 11.7 fps, which
outperforms the baseline Mask R-CNN with 21.7 AP
at 11.0 fps in the best confidence score setting.

As a result, the models trained by our RS Loss outputs
larger confidence scores, and accordingly, the score thresh-
old needs to be adjusted accordingly for better efficiency.
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Table S11. The performances of RS-Mask R-CNN and baseline Mask R-CNN (i.e. trained by Cross-entropy Loss) over different confidence
score thresholds on LVIS v1.0 val set. RS-Mask R-CNN is robust to score threshold while the performance of Mask R-CNN degrades
rapidly especially for rare classes. Our best method achieves 25.2 mask AP at 11.7 fps (bold), which is also slightly faster than the best
performing method of Mask R-CNN (underlined). Accordingly, we set NMS score threshold of RS-Mask R-CNN to 0.60 for LVIS dataset.
Inference time is reported on a single A100 GPU.
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