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1. RAD tensor visualisation
An illustration of the RAD tensor is proposed in Fig-

ure 1. Each slice of 2D views corresponds to a discretized
bin of the third axis. In Figure 1(b) for instance, the 256
range-Doppler slices correspond to the view of each dis-
cretized value of the angle axis. One can observe redundant
signal information and a significant level of noise for each
group of 2D-view slices.

2. Detailed multi-view architectures
We provide in Tables 1 and 2 the architecture details of

the proposed multi-view network (MV-Net) and temporal
multi-view network with ASPP modules (TMVA-Net) re-
spectively. For each layer, the parameters of the operations
used are specified in the following manner:

• n-dim convolution: ConvnD (input channels, out-
put channels, kernel size, stride, padding, dila-
tion rate);

• n-dim up-convolution: ConvTransposenD (input chan-
nels, output channels, kernel size, stride, padding,
dilation rate);

• maximum pooling: MaxPool2D (kernel size, stride);

• atrous spatial pyramid pooling: ASPP (input channels,
output channels);

• n-D batch normalisation: BNnD (input channels);

• Leaky ReLU activation: LeakyReLU (negative slope);

Where n∈{1, 2, 3} is the dimension of the associated oper-
ation.

The ASPP module [1] has the same architecture as the
one introduced by Kaul et al. [3] for range-angle semantic
segmentation. We note that the ‘output channels’ parameter

for the ASPP module corresponds to the number of output
channels for each parallel convolution. We also note that the
‘stride’ parameter can be either a scalar or a tuple of scalars
depending on the axis on which it is applied.

3. Coherence loss

The purpose of the coherence loss (CoL) is to preserve
a consistency between the predictions of the model for the
different views of the same scene. The procedure used to
construct this loss is illustrated in Figure 2.

4. Pre-processing and training procedures

The experiments in the main paper have been conducted
using the parameters detailed in Table 3. An exponential
decay with γ = 0.9 has been applied to each learning rate
with an epoch step specific to each model (see Table 3).
The competing methods have been trained using the Cross
Entropy (CE) loss, except for the RSS-Net, which is trained
with a weighted Cross Entropy (wCE) using the formulation
in [3]. Our methods have been trained with the proposed
combination of losses using the following parameters set
up empirically: λwCE = 1, λSDice = 10 and λCoL = 5.

The architectures with which we compare our work have
been designed to process inputs of size 256 × 256. Since
the size of the range-Doppler view is 256× 64 in the CAR-
RADA dataset [5], it is resized in the Doppler dimension to
train these competing models. On the other hand, our pro-
posed architectures are composed of down-sampling layers
adapted to the size of the Doppler dimension, thus they do
not require this pre-processing step. The range-angle view
has a size of 256 × 256 and does not require a resizing in
both cases. For all methods, we used vertical and horizontal
flip as data augmentation to reduce over-fitting.

Each view is normalised between 0 and 1 using local
batch statistics for the competing methods. Our normali-
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Figure 1: Visualisation of the Range-Angle-Doppler (RAD) tensor. (a) Camera image of the scene. The corresponding
RAD tensor is visualised by slices of (b) range-Doppler, (c) range-angle or (d) angle-Doppler views w.r.t. their discretized
third axis.

Figure 2: Computation of the coherence loss. The seg-
mentation maps pRD and pRA of the two views are aggre-
gated by max pooling along the axis that they do not share
(either the Doppler or the angle). The coherence loss is the
mean squared error (MSE) between the two resulting vec-
tors p̃RD and p̃RA.

sation strategy consists in using the global statistics of the
entire CARRADA dataset to normalise the input views.

5. Quantitative results

Our proposed TMVA-Net architecture provides the best
trade-off between performance and number of parameters
for both range-Doppler and range-angle semantic segmen-
tation tasks, as illustrated in Figure 3 with mIoU metric.

Figure 3: Performance-vs.-complexity plots for all meth-
ods in RD and RA tasks. Performance is assessed by mIoU
(%) and complexity by the number of parameters (in mil-
lions) for a single task. Top-left models correspond to the
best performing and the lightest. Only our models, MV-Net
and TMVA-Net, are able to segment both views simultane-
ously. For all the other methods, two distinct models must
be trained to address both tasks, which doubles the number
of actual parameters.

6. Qualitative results

Additional qualitative results are shown in Figure 4 for
each method on scenes (1-2) from the CARRADA-Test. For
the scene (1), RAMP-CNN (g) and TMVA-Net (i-j) display
well segmented RD views. However, only TMVA-Net with
CoL (j) is able to localise and classify both objects in the
RD and RA views of the first example. In scene (2), four
methods (d-e-i-j) are able to well localise objects in the RD
view. Once again, only TVMA-Net with CoL (j) is able



Layer Inputs Output resolution
(C × H × W ) Operations

RD Encoder

rd layer1 RD view 128 × 256 × 64
Conv2D(3, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

rd layer2 rd layer1 128 × 128 × 64 MaxPool2D(2, (2, 1))

rd layer3 rd layer2 128 × 128 × 64
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

rd layer4 rd layer3 128 × 64 × 64 MaxPool2D(2, (2, 1))

rd layer5 rd layer4 128 × 64 × 64 Conv1D(128, 128, 1 × 1, 1, 0, 1)

RA Encoder

ra layer1 RA view 128 × 256 × 256
Conv2D(3, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

ra layer2 ra layer1 128 × 128 × 128 MaxPool2D(2, 2)

ra layer3 ra layer2 128 × 128 × 128
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

ra layer4 ra layer3 128 × 64 × 64 MaxPool2D(2, 2)

ra layer5 ra layer4 128 × 64 × 64 Conv1D(128, 128, 1 × 1, 1, 0, 1)

Latent space layer6 rd layer5, ra layer5 256 × 64 × 64 concatenate(rd layer5, ra layer5)

RD Decoder

rd layer7 layer6 128 × 64 × 64 Conv1D(256, 128, 1 × 1, 1, 0, 1)

rd layer8 rd layer7 128 × 128 × 64 ConvTranspose2D(128, 128, 2 × 1, (2, 1), 1, 1)

rd layer9 rd layer8 128 × 128 × 64
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

rd layer10 rd layer9 128 × 256 × 64 ConvTranspose2D(128, 128, 2 × 1, (2, 1), 1, 1)

rd layer11 rd layer10 128 × 256 × 64
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

rd layer12 rd layer11 K × 256 × 64 Conv1D(128, K, 1 × 1, 1, 0, 1)

RA Decoder

ra layer7 layer6 128 × 64 × 64 Conv1D(256, 128, 1 × 1, 1, 0, 1)

ra layer8 ra layer7 128 × 128 × 128 ConvTranspose2D(128, 128, 2 × 2, 2, 1, 1)

ra layer9 ra layer8 128 × 128 × 128
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

ra layer10 ra layer9 128 × 256 × 256 ConvTranspose2D(128, 128, 2 × 2, 2, 1, 1)

ra layer11 ra layer10 128 × 256 × 256
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

ra layer12 ra layer11 K × 256 × 256 Conv1D(128, K, 1 × 1, 1, 0, 1)

Table 1: Multi-view network (MV-Net) architecture. This table lists all the layers contained in the model taking as input
multi-view radar representations (RD and RA views) to predict segmentation maps for each multi-view output. Details about
the parameters of each operation are provided in Section 2. We note K the number of classes. The number of input channels
in the first layer corresponds to the consecutive frames of each view stacked in temporal dimension, here q = 2 and thus the
number of channels is 3.

to well segment objects in both RD and RA views while
our method without CoL (i) predicts pedestrian and cyclist
categories for pixels of the same object.

Figure 5 shows qualitative results for each method
trained on CARRADA-Train and CARRADA-Val, and
tested on in-house sequences of complex urban scenes (1-2)
with a different range resolution. The qualitative examples
and results have been cropped with respect to the minimum
and maximum range of the dataset used for training. The
ground-truth masks in columns (1-b) and (2-b) are empty
because the radar views are not annotated. In scene (1), only
TMVA-Net models (i-j) are able to localise and classify the

signals related to the pedestrians and cars in both the RD
and the RA views. In scene (2), only TMVA-Net (i-j) meth-
ods succeed to localise and classify cars and pedestrians in
the RA view. We note that TMVA-Net without CoL (i) de-
tects more car signals while TMVA-Net with CoL (j) is the
only method capable of distinguishing pedestrian signatures
on both RD and RA views.

These two examples in complex urban scenes suggest
that our method has successfully learnt object signatures in
the CARRADA dataset and is able to generalise well.



Layer Inputs Output resolution
(C × H × W ) Operations

RD Encoder

rd layer1 RD view 128 × 256 × 64
Conv3D(1, 128, 3 × 3 × 3, 1, (0, 1, 1), 1) + BN3D(128) + LeakyReLU(0.01)
Conv3D(128, 128, 3 × 3 × 3, 1, (0, 1, 1), 1) + BN3D(128) + LeakyReLU(0.01)

rd layer2 rd layer1 128 × 128 × 64 MaxPool2D(2, (2, 1))

rd layer3 rd layer2 128 × 128 × 64
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

rd layer4 rd layer3 128 × 64 × 64 MaxPool2D(2, (2, 1))

rd layer5 rd layer4 128 × 64 × 64 Conv1D(128, 128, 1 × 1, 1, 0, 1)

rd layer6 rd layer5 640 × 64 × 64 ASPP(128, 128)

rd layer7 rd layer6 128 × 64 × 64 Conv1D(640, 128, 1 × 1, 1, 0, 1)

AD Encoder

ad layer1 AD view 128 × 256 × 64
Conv3D(1, 128, 3 × 3 × 3, 1, (0, 1, 1), 1) + BN3D(128) + LeakyReLU(0.01)
Conv3D(128, 128, 3 × 3 × 3, 1, (0, 1, 1), 1) + BN3D(128) + LeakyReLU(0.01)

ad layer2 ad layer1 128 × 128 × 64 MaxPool2D(2, (2, 1))

ad layer3 ad layer2 128 × 128 × 64
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

ad layer4 ad layer3 128 × 64 × 64 MaxPool2D(2, (2, 1))

ad layer5 ad layer4 128 × 64 × 64 Conv1D(128, 128, 1 × 1, 1, 0, 1)

ad layer6 ad layer5 640 × 64 × 64 ASPP(128, 128)

ad layer7 ad layer6 128 × 64 × 64 Conv1D(640, 128, 1 × 1, 1, 0, 1)

RA Encoder

ra layer1 RA view 128 × 256 × 256
Conv3D(1, 128, 3 × 3 × 3, 1, (0, 1, 1), 1) + BN3D(128) + LeakyReLU(0.01)
Conv3D(128, 128, 3 × 3 × 3, 1, (0, 1, 1), 1) + BN3D(128) + LeakyReLU(0.01)

ra layer2 ra layer1 128 × 128 × 128 MaxPool2D(2, 2)

ra layer3 ra layer2 128 × 128 × 128
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

ra layer4 ra layer3 128 × 64 × 64 MaxPool2D(2, 2)

ra layer5 ra layer4 128 × 64 × 64 Conv1D(128, 128, 1 × 1, 1, 0, 1)

ra layer6 ra layer5 640 × 64 × 64 ASPP(128, 128)

ra layer7 ra layer6 128 × 64 × 64 Conv1D(640, 128, 1 × 1, 1, 0, 1)

Latent space layer8 rd layer5, ra layer5, ad layer5 384 × 64 × 64 concatenate(rd layer5, ra layer5, ad layer5)

RD Decoder

rd layer9 layer8 128 × 64 × 64 Conv1D(384, 128, 1 × 1, 1, 0, 1)

rd layer10 rd layer7, rd layer9, ad layer7 384 × 64 × 64 concatenate(rd layer7, rd layer9, ad layer7)

rd layer11 rd layer10 128 × 128 × 64 ConvTranspose2D(384, 128, 2 × 1, (2, 1), 1, 1)

rd layer12 rd layer11 128 × 128 × 64
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

rd layer13 rd layer12 128 × 256 × 64 ConvTranspose2D(128, 128, 2 × 1, (2, 1), 1, 1)

rd layer14 rd layer13 128 × 256 × 64
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

rd layer15 rd layer14 K × 256 × 64 Conv1D(128, K, 1 × 1, 1, 0, 1)

RA Decoder

ra layer9 layer8 128 × 64 × 64 Conv1D(384, 128, 1 × 1, 1, 0, 1)

ra layer10 ra layer7, ra layer9, ad layer7 384 × 64 × 64 concatenate(ra layer7, ra layer9, ad layer7)

ra layer11 ra layer10 384 × 128 × 128 ConvTranspose2D(128, 128, 2 × 2, 2, 1, 1)

ra layer12 ra layer11 128 × 128 × 128
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

ra layer13 ra layer12 128 × 256 × 256 ConvTranspose2D(128, 128, 2 × 2, 2, 1, 1)

ra layer14 ra layer13 128 × 256 × 256
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)
Conv2D(128, 128, 3 × 3, 1, 1, 1) + BN2D(128) + LeakyReLU(0.01)

ra layer15 ra layer14 K × 256 × 256 Conv1D(128, K, 1 × 1, 1, 0, 1)

Table 2: Temporal multi-view network with ASPP modules (TMVA-Net) architecture. This table lists all the layers
contained in the model taking as input multi-view radar representations (RD and RA views) to predict segmentation maps
for each multi-view output. Details about the parameters of each operation are provided in Sec. 2. We note K the number
of classes. The number of input channels in the first layer is fixed to 1 because the consecutive frames are considered as a
sequence, here q = 4 and thus the number of channels is 5.



View Method Param. # q Batch size LR LR step Epoch #

RD

FCN-8s [4] 134.3 0 20 10−4 10 100
U-Net [6] 17.3 3 6 10−4 20 150
DeepLabv3+ [2] 59.3 3 20 10−4 20 150
RSS-Net 10.1 3 6 10−3 10 100
RAMP-CNN 106.4 9 2 10−5 20 150
MV-Net (ours-baseline) 2.4* 3 13 10−4 20 300
TMVA-Net (ours) 5.6* 5 6 10−4 20 300

RA

FCN-8s [4] 134.3 0 10 10−4 10 100
U-Net [6] 17.3 3 6 10−4 20 150
DeepLabv3+ [2] 59.3 3 20 10−4 20 150
RSS-Net 10.1 3 6 10−4 10 100
RAMP-CNN 106.4 9 2 10−5 20 150
MV-Net (ours-baseline) 2.4* 3 13 10−4 20 300
TMVA-Net (ours) 5.6* 5 6 10−4 20 300

Table 3: Hyper-parameters used for training. The num-
ber of trainable parameters (in millions) for each method
corresponds to a single view-segmentation model; Two
such models, one for each view, are required for all meth-
ods but ours. In contrast, the number of parameters re-
ported for our methods (‘*’) corresponds to a single model
that segments both RD and RA views. RSS-Net and
RAMP-CNN have been modified to be trained on both
tasks (see Sec. 4.2 of the main article). The input of a
model consists in q+1 successive RAD frames, where q is
the number of considered past frames, if any. The learning
rate (‘LR’) step is in epochs.

Figure 4: Qualitative results on two test scenes of CARRADA-Test. (1) and (2) are two independent examples. (Top)
camera image of the scene and results of the RD segmentation; (Bottom) Results of the RA Segmentation. (a) Radar view
signal, (b) ground-truth mask, (c) FCN8s, (d) U-Net, (e) DeepLabv3+, (f) RSS-Net, (g) RAMP-CNN, (h) MV-Net (our
baseline w/ wCE+SDice loss), (i) TMVA-Net (ours, w/ wCE+SDice loss), (j) TMVA-Net (ours, w/ wCE+SDice+CoL
loss).
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