— Supplemental Document —
NPMs: Neural Parametric Models for 3D Deformable Shapes

Pablo Palafox! Aljaz Bozic!

!Technical University of Munich

In this appendix, we provide additional details about our
proposed Neural Parametric Models. Specifically, we de-
scribe the training data preparation (Sec. 1), the network
architectures (Sec. 2), as well as training details including
the hyper-parameters (Sec. 3), and information about the
inference-time optimization (Sec. 4). Additional qualitative
evaluations and results are shown in the supplemental video.

1. Data Preparation
1.1. Waterproofing Canonical Shapes

We waterproof canonical shapes by first rendering depth
maps of the non-watertight shape inside a virtual multi-view
setup, then computing partial surface meshes from each
depth map and finally running Poisson surface reconstruc-
tion [1] on the merged set of partial meshes. Although this
approach is not guaranteed to produce watertight meshes,
especially when applied to meshes with large holes, we
found it to work well on our canonical shapes, allowing
us to retain details present in the original (non-watertight)
meshes.

1.2. Train Samples

Shape space. For each shape identity ¢ in the train dataset,
given their watertight mesh in canonical pose, we sample a
total number of N, points {xF}* € R3, along with their
corresponding ground truth SDF value {sF}Y: € R (see
Fig. 1). As explained in the main paper, these samples come
from two sources:

1. N near-surface points sampled randomly within a
distance of 0.05 from the surface of the shape.

2. N} points uniformly sampled within the unit bounding
box, such that Ny = NJ*® + N2

In our experiments, we set N}*®* = 300k and N = 100k,
for a total of Ny, = 400k.

Pose space. In Sec. 3.3 of the main text, we explain the
procedure for generating flow samples for training the pose

Justus Thies!?

Matthias NieBner'! ~Angela Dai'

2Max Planck Institute for Intelligent Systems, Tiibingen

Figure 1: We visualize the N; training points available for a
given identity for training the shape MLP. Points in red are
outside of the canonical shape, and so have a positive SDF
value. Points in blue, on the other hand, have a negative
SDF value, since they reside within the shape. Note that we
sample densely near the surface (N = 300k). Addition-
ally, we sample points in the unit bounding box of the shape
(V&' = 100Kk).

MLP; here, we provide additional details. First, we sam-
ple N, surface points {z¥ }kNil on the normalized canonical
shapes for each i-th identity in the dataset; we also store the
barycentric weights for each sampled point. Each point is
then randomly displaced a small distance dn ~ N(0, X2)
along the normal direction of the corresponding triangle in
the mesh, with ¥ € R3 a diagonal covariance matrix with
entries 3;; = 0. Then, for each j-th posed shape available
for the identity, we compute corresponding points {{Bf}iv:pl

s FC FC FC FC FC FC FC FC FC1TH 1
-> -> -> > H - - - -> > >
4

Figure 2: A detailed visualization of our shape MLP.

in the posed shape by using the same barycentric weights
and dn to sample the posed mesh. This approach gives us
a deformation field (defined near the surface) between the
canonical pose of a given identity ¢ and a deformed pose j
of the same identity.

In our experiments, we pre-compute N, = 200k cor-
respondences for every j-th posed shape available in the
dataset. We obtain good results by sampling 50% of these
points with o = 0.01, and 50% with 0 = 0.002 (in normal-
ized coordinates).

2. Network Architecture
2.1. Shape and Pose Auto-decoders

Figures 2 and 3 detail our feed-forward networks for
learning our latent shape and pose spaces. Both MLPs
are composed of 8 fully connected layers, applied with
weight-normalization [6]. We use ReLU activations as non-
linearities after every intermediate layer. After the final
layer of our shape MLP we use tanh to regress an SDF
value, whereas for our pose MLP we directly regress a 3-
dimensional flow vector. For both networks, a skip connec-
tion is used at the fourth layer.

To learn our human NPM, we set the feature size F of
each layer in our shape MLP to 512, and Dy = 256. For
learning a hand NPM, we use Fy; = 64 and Dy = 16.
When learning the latent pose space, we set F}, = 1024
and D}, = 256 in the case of humans, and F}, = 256 and
D, = 64 for hands. We use the positional encoding pro-
posed in [5] to encode the query point & for both our shape
and pose MLPs, and use 8 frequency bands. Positional en-
coding is denoted by ~y() in Figures 2 and 3.

2.2. Shape and Pose Encoders for Initialization

As presented in the main paper, to provide a good ini-
tialization for our latent-code optimization at test time, we
train two 3D convolutional encoders fo_ and fq, to predict
initial estimates of the latent shape and pose codes, respec-
tively. Both encoders take as input the back-projected depth
observation in the form of a partial voxel grid V. We then
employ 3D convolutions and a final fully-connected layer
to output a latent code estimate.

Figure 3: A detailed visualization of our pose MLP.

Shape encoder. In particular, given the list of shape codes
{s;}5_ learned from the S identities in the train dataset,
and a set of P voxel grids of the available P posed shapes
in the training dataset {V;}7_,, we train fq_ to predict the
mapping from the voxel grid V; to the corresponding shape
code of the underlying identity.

Pose encoder. Similarly, given the list of pose codes
{p; }le learned from the P posed shapes in the dataset,
and the set of P voxel grids {V;}1_,, we train fq, to pre-
dict the mapping from the voxel grid V; of a posed shape to
the corresponding pose code.

Fig. 4 visualizes the encoder architecture employed for
fa., with D the output latent code dimension. A similar
architecture is employed to learn fq , differing only in the
output channel dimension of the 3D convolution operations.
In particular, in our pose encoder we employ output channel
dimensions of 16, 32, 64, 128, 256, 256, respectively for
each 3D convolutional block in Fig 4.

3. Training Details

We train both our shape and pose MLPs until conver-
gence; in practice, this required 4000 epochs for the shape
MLP, and 150 epochs for the pose MLP, which amounts to a
similar number of iterations for each. We use a batch size of
4 in both cases. Our human NPM was trained on a GeForce
RTX 3090 for approximately 8 days in total, which could
be accelerated by parallelizing training on multiple GPUs.

Shape space. For each identity in a mini-batch, out of the
total Ny samples available for a given identity in its canon-
ical shape, we randomly sub-sample 50k training points,
70% of which are drawn from the available NJ® near-
surface points, with the remaining 30% drawn from the set
of N uniform samples.

Pose space. For each posed shape in a mini-batch, out
of the total IV, flow samples available, we randomly sub-
sample 50k correspondences.

DownscaleBlock(f0, 1)

| ResBlock(f1) i

256 x 256 x 256 x 1

128 x 128 x 128 x 8

DownscaleBlock(8, 16)

Conv3d(f0, f1)
k=3, s=2, p=1

64 x 64 x 64 x 16

DownscaleBlock(16, 32)

32 X 32 x 32 x 32

‘ ResBlock(f) :r ————————————————————————————— =
DownscaleBlock(32, 64) =
| Conv3d(f, f)
16 x 16 x 16 x 64 k=3, s=1, p=1
T | BatchNorm |
DownscaleBlock(64, 128) | ReLU |
8 X 8 x 8 x 128 Conv3d(f,)
; k=3, s=1, p=1
Co T e .
Conv3d(f0, 1) @.; ,,,,,,,, S
k=3, s=2, p=1 | ReLU |
. L
4 x4 x4 x 256

Conv1d(256, 4%)
k=2D, s=1, p=0

LeakyReLLU

Conv1d(2D, D)
k=1, s=1, p=0

D |

Figure 4: A visualization of our 3D shape encoder for
latent-code initialization at test time. Green blocks repre-
sent tensors, while the remaining blocks depict operations.

4. Inference-time Optimization Details

When fitting an NPM to an input monocular depth se-
quence of L frames, we optimize for the shape code s
and L pose codes {p;}/_, by minimizing Eq. 5 from the
main text. In our experiments, we optimize for a total of
I = 1000 iterations. We use the Adam optimizer [2] and
learning rates of 5 x 10~* and 1 x 10~ for the shape and
pose codes, respectively. We decrease these learning rates
by a factor of 0.5 after every 250 iterations, and control the

temporal regularization loss £; in Eq. 5 with a weight of
100.

During test-time optimization, each element in a mini-
batch consists of one frame from the sequence; we use a
batch size of 4. Before optimization begins, we make ini-
tial estimates of the shape code and the L pose codes. For
the former, we use our shape encoder fq_ to make shape
code estimates for all L frames in the input sequence. We
then compute the average vector and use this as initial shape
code estimate. As for the pose codes, we employ our pose
encoder fq to estimate a pose code for each frame in the
sequence.

At this point, given the initial shape code estimate,
we can extract an initial canonical shape by querying our
learned shape MLP on a 3D grid, and then running March-
ing Cubes to extract the surface [3], as explained in Sec. 3.2.
We then pre-sample N; = 500k points, {a:k},lcvél, around
this initial estimate of the canonical shape; during opti-
mization, for each frame in a mini-batch, we sub-sample
Np = 20k points —out of the available N;— to minimize
Eq. 5.

As presented in the main text, we employ an addi-
tional ICP-like (Iterative Closest Point) term —denoted by
Licp in Eq. 5- that enforces surface points to be close
to the input point cloud ();, which results from back-
projecting the observed depth map. In particular, at the be-
ginning of every iteration, out of the N, points xj sam-
pled in the canonical space for each element in a mini-
batch, we select those points x7® within a distance €jcp
from the implicitly represented surface of the canonical
shape, ie., }° = xy | | fo.(s,@r)| < €cp (in our experi-
ments, €jcp = 0.001 in normalized coordinates). Then, for
every observed point ¢ € ();, we minimize the distance to
its nearest neighbor in the set of predicted model points in
the j-th frame, denoted by R = {x}° + fy, (s, pj, T}°) }:

‘Cicp =)‘icp Z ||q - NNR(q)HQ . (1)
qeqQ;

In the above equation, NNz (-) denotes a function that
queries the nearest neighbor of a 3D point in a set of points
‘R. We control the importance of this loss with A;cp, which
we set to 0.0005 in our experiments. We found this loss to
be specially beneficial at the beginning of the optimization,
in order to avoid falling in local minima. We then disable
it, i.e., A\icp = 0, after I/2 iterations. In Tab. 1 we show the
contribution of our ICP term.

As a reference, optimizing over an input sequence
of 100 frames takes approximately 4 hours on a
GeForce RTX 3090 with our unoptimized implementation.

Method IoUT C-l3(x107%)| EPE (x107%)]
Ours (w/o Positional Enc.) 0.76 0.142 1.29
Ours (code size 128) 0.81 0.052 0.95
Ours (code size 384) 0.82 0.076 1.05
Ours (w/o temp. consist.) 0.82 0.037 0.81
Ours (w/ code consist.) 0.82 0.034 0.75
Ours (w/o ICP loss) 0.83 0.031 0.79
Ours 0.83 0.022 0.74

Table 1: Ablation study on CAPE [4] to evaluate the contri-
bution of our different modules and network choices.

(a)

Figure 5: (a) Robustness in the presence of strong occlu-
sions. (b) Example of complex topology and clothing.

5. Ablation Studies

Table 1 shows an ablation study on the effect of train-
ing the shape and pose MLPs without positional encoding,
on the latent code size, as well as on the effect of several
test-time hyperparameters: not using any kind of tempo-
ral consistency, enforcing temporal consistency on the pose
codes (instead of on the flow predictions), and, finally, on
the effect of our ICP loss, as already mentioned in Sec. 4.

6. Robustness to Initialization

Latent code initialization via learned encoders offers ad-
ditional robustness against local minima, but even without
such initial code estimates, our method achieves compet-
itive performance (Table 1 in the main text). Addition-
ally, methods such as SMPL rely on strong initialization,
which we provide with human joint predictions computed
with OpenPose. Without this additional guidance, optimiz-
ing over SMPL parameters becomes ill-posed, particularly
for the task of monocular depth fitting. In contrast, our pro-
posed model fitting is robust to self-occlusions caused by
rotations (Fig. 5a).

7. Consistency of Shape Fitting

To evaluate the consistency of shape fitting in NPMs,
we reconstructed two consecutive sub-sequences of 50

Pose Source

Shape Source

Figure 6: Comparison with [7] on the task of pose transfer.

frames each, and measured the similarity between the corre-
sponding shape estimates, which matched almost perfectly
(0.96 ToU and 1.61 x 105 chamfer).

8. Additional Examples

To further showcase the expressiveness and potential of
NPMs, in Figure 5b we show an additional identity drawn
from the latent space featuring complex topologies and
clothing.

9. Comparison with Zhou et al. [7]

Additionally, we compare with [7] on the task of pose
transfer. In contrast to [7], our focus is to construct disen-
tangled spaces which enable test-time fitting to new obser-
vations. Furthermore, [7] uses a mesh auto-encoder, limit-
ing the approach to only representing a fixed topology. Our
approach naturally deals with complex topology, as we have
shown in Sec. 4 in the main paper. For this experiment, we
trained an NPM on the same human body dataset as [7], and
show a comparison in Fig. 6.

References

[1] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of the fourth
Eurographics symposium on Geometry processing, volume 7,
2006. 1

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 3

[3] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163-169, 1987. 3

[4] Qianli Ma, Jinlong Yang, Anurag Ranjan, Sergi Pujades, Ger-
ard Pons-Moll, Siyu Tang, and Michael J. Black. Learning to
dress 3d people in generative clothing. In Computer Vision
and Pattern Recognition (CVPR), June 2020. 4

(5]

(6]

(7]

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision, pages
405-421. Springer, 2020. 2

Tim Salimans and Diederik P Kingma. Weight normalization:
A simple reparameterization to accelerate training of deep
neural networks. arXiv preprint arXiv:1602.07868, 2016. 2
Keyang Zhou, Bharat Lal Bhatnagar, and Gerard Pons-Moll.
Unsupervised shape and pose disentanglement for 3d meshes.
In European Conference on Computer Vision, pages 341-357.
Springer, 2020. 4

