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Overview
In this document, we first present the detailed parameters of the networks in Section 1. Then we qualitatively evaluate

our method on the datasets with realistic blur kernels in Section 2 and present both the qualitative and quantitative evaluation
on the datasets with the commonly used degradation model (i.e., Bicubic) in Section 3. Next, we further demonstrate the
effectiveness of the proposed blur kernel estimation method on the video super-resolution problem in Section 4. Section 5
provide the qualitative evaluations of the feature warping operation. Section 6 analyzes that the proposed method generates
videos with better temporal consistency property. We report the running time of the proposed method against state-of-the-art
methods in Section 7. Finally, we show more visual comparisons in Section 8.

1. Network Parameters
In the main manuscript, we have shown the architectures of the proposed network including Nk, Ne, Nf , Nγ , Nβ , Nd, and

NI . For the optical flow estimation network, we use the network architectures by the PWC-Net [12] with default parameters.
In this supplemental material, we present the network parameters of Nk, Ne, Nf , Nγ , Nβ , Nd, and NI in Figures 1-3.
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Figure 1. Network architectures and parameters of the blur kernel estimation network Nk. “FC” denotes a fully connected layer. “RCAB”
denotes the Residual Channel Attention Block (RCAB) by [18]. The padding operation is used in all the convolutional layers. The first
three numbers (e.g., 3 x 3, 64) in each unit denote the filter size and the number of the output feature channels.

2. Qualitative Evaluations on the Datasets with Realistic Blur Kernels
As shown in Table 2 of the main manuscript, our method is able to solve the LR videos with realistic blur kernels. In this

document, we show the visual comparison results with realistic blur kernels from [1]. Some blur kernels that are used for
evaluations are shown in Figure 4. Figures 5-7 show that the proposed method generates much clearer SR frames with finer
detailed structures. All of these demonstrate that our method is able to solve the LR videos with realistic blur kernels.

3. Evaluations on the Datasets with Bicubic Kernels
We note that most existing video SR methods usually use the Bicubic downsampling as the approximation of the degrada-

tion process and use the training datasets generated by the Bicubic downsampling to train the deep CNN model. To examine
whether the proposed method works well or not for such case, we follow the protocols of [3, 15, 16] to train the proposed
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Figure 2. Network architectures and parameters of the networksNe,Nf ,Nd,Nγ , andNβ . The negative slope value of the LeakyReLU is
set to be 0.1. The padding operation is used in all the convolutional layers. When applying the networkNe to the color images, the number
of the input feature channel in the first convolutional layer ofNe is set to be 3. When applying the networkNe to S(Ĩi), the number of the
input feature channel in the first convolutional layer ofNe is the same as that of S(Ĩi). S denotes the spatial-to-depth transformation.
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Figure 3. Network architectures and parameters of the restoration network NI . The negative slope value of the LeakyReLU is set to be 0
(i.e., ReLU). The padding operation is used in all the convolutional layers.

Figure 4. Realistic blur kernels that are used for evaluations. The size of the blur kernels are resized into 13× 13 pixels for evaluations.

Table 1. Quantitative evaluations of the state-of-the-art video SR methods on the REDS4 dataset, where the degradation process is approx-
imated by the Bicubic downsampling.

Algorithms Bicubic RCAN [18] SPMC [13] DUF [5] TOFlow [16] RBPN [3] Ours-L

REDS4 [15] 25.59 28.71 27.74 28.60 27.77 29.82 30.28
0.7077 0.8184 0.7915 0.8254 0.7949 0.8537 0.8643

method on the REDS dataset [8]. Table 1 shows the quantitative evaluations on the REDS4 dataset. Although our algorithm
is designed for the blind video SR problem, it performs favorably against state-of-the-art methods when using the Bicubic
downsampling as the approximation of the degradation process, suggesting the effectiveness of the proposed method.

4. Effectiveness of the Blur Kernel Estimation on Blind Video Super-resolution
In Figure 1, Table 4, and Figure 7 of the main manuscript, we have shown that using the blur kernel estimation is able to

generate high-quality frames with clearer structural details. In this supplemental material, we further demonstrate the effect
of the blur kernel estimation on video super-resolution. We compare the proposed method without using the blur kernel



(b) HR patch (c) Bicubic (d) IKC [2] (e) KGAN[1]+ZSSR[10]

(a) Ground truth HR frame (f) DUF [5] (g) RBPN [3] (h) EDVR [15] (i) Ours-L

Figure 5. Video SR result (×4) on the REDS dataset [8], where the realistic blur kernels [1] are used in the degradation process. The
proposed algorithm recovers high-quality frames with clearer structures.

(b) HR patch (c) Bicubic (d) IKC [2] (e) KGAN[1]+ZSSR[10]

(a) Ground truth HR frame (f) DUF [5] (g) RBPN [3] (h) Deblur[9]+EDVR[15] (i) Ours-L

Figure 6. Video SR result (×4) on the REDS dataset [8], where the realistic blur kernels [1] are used in the degradation process. The
proposed algorithm recovers high-quality frames with clearer structures.

(b) HR patch (c) Bicubic (d) IKC [2] (e) KGAN[1]+ZSSR[10]

(a) Ground truth HR frame (f) DUF [5] (g) RBPN [3] (h) Deblur[9]+EDVR[15] (i) Ours-L

Figure 7. Video SR result (×4) on the REDS dataset [8], where the realistic blur kernels [1] are used in the degradation process. The
proposed algorithm recovers high-quality frames with clearer structures.

estimation. The results in Figure 8 demonstrate that using the motion blur estimation generates high-resolution images with
finer structural details.

5. Qualitative Evaluations of the Image-space Warping and Feature Space Warping Operations
In Table 6 of the main manuscript, we have shown that using the warping operation in the deep feature space generates the

results with higher PSNR and SSIM values. In supplemental material, we provide some visual comparisons. Figure 9 shows



(a) Ground truth high-resolution frame (b) HR patch (c) Bicubic (d) w/o kernel modeling (e) Ours

Figure 8. Effectiveness of the blur kernel estimation on video super-resolution (×4). Using the blur kernel estimation is able to generate
the results with much clearer structural details.

Table 2. Comparisons of running time (in second). The results are tested on the videos with 720× 1280 pixels.

Methods RCAN [18] RBPN [3] DAN [6] USRNet [17] Ours
Running time (/s) 0.945 0.709 0.544 1.36 0.523

the visual comparisons of the results by the image space warping and feature space warping. Using feature space warping
can generate high-quality frames with better structural details.

(a) GT (b) Bicubic (c) Image space warping (d) Feature space warping
Figure 9. Comparisons of the results (×4) by the image space warping and feature space warping.

6. Temporal Consistency
To demonstrate the effectiveness of the proposed algorithm on temporal consistency, we show the super-resolved videos in

Figure 10. The video results show that the proposed algorithm has a better temporal consistency property than other methods.

7. Running Time Comparisons
In the main manuscript, we show that the proposed method has relatively fewer model parameters and the lowest floating

point operations (FLOPs) in Table 7. In this document, we further report the running time of the proposed against state-of-
the-art methods. Table 2 shows that the proposed method is much more efficient. In contrast to the methods [6, 17] that need
alternative optimization processes to generate HR images, our network directly estimates latent HR frames, which is 2.6x
faster than [17].

8. More Experimental Results
In this section, we show more experimental results to demonstrate the effectiveness of the proposed methods.



Results on the unknown realistic blur kernels. In addition to Figures 5-7, we further show the evaluation results on the
realistic blur kernels in Figure 11. The results show that the proposed algorithm is able to super-resolve videos and generates
much clearer results than those by state-of-the-art methods.

Results on the unknown Gaussian blur kernels. Figures 12-15 show evaluation results from the SPMCS dataset [13],
where the blur kernel in the degradation process are unknown Gaussian kernels. The results show that the proposed algorithm
generates much clearer frames with finer detailed structures than those by state-of-the-art methods.

Results on real-world videos with complex motion blur. Figures 16-19 show evaluation results on real-world videos which
contains complex motion blur [7]. The results show that the proposed algorithm generates much clearer frames with finer
detailed structures than those by state-of-the-art methods.
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(a) Input video (b) Bicubic

(c) RCAN [18] (d) DUF [5]

(e) w/o kernel modeling (f) Ours

Figure 10. Temporal consistency property. The proposed algorithm generates the high-resolution videos with a better temporal consistency
property. Please view this figure using the Adobe Acrobat Reader as it contains videos.



(b) HR patch (c) Bicubic (d) IKC [2] (e) KGAN[1]+ZSSR[10] (f) DUF [5]

(a) Ground truth HR frame (g) RBPN [3] (h) EDVR [15] (i) TGA [4] (j) TDAN [14] (k) Ours-L

Figure 11. Video SR result (×4) on the REDS dataset [8], where the realistic blur kernels [1] are used in the degradation process. The
proposed algorithm recovers high-quality frames with clearer structures.

(b) HR patch (c) Bicubic (d) IKC [2] (e) KGAN[1]+ZSSR[10]

(a) Ground truth HR frame (f) DUF [5] (g) RBPN [3] (h) Deblur[9]+EDVR[15] (i) Ours

Figure 12. Video super-resolution result (×4) on the SPMCS dataset [13], where the blur kernels in the degradation process are unknown
Gaussian kernels. The proposed algorithm recovers high-quality frames with clearer structures.

(b) HR patch (c) Bicubic (d) IKC [2] (e) KGAN[1]+ZSSR[10]

(a) Ground truth HR frame (f) TOFlow [16] (g) RBPN [3] (h) Deblur[9]+EDVR[15] (i) Ours

Figure 13. Video super-resolution result (×4) on the SPMCS dataset [13], where the blur kernels in the degradation process are unknown
Gaussian kernels. The proposed algorithm recovers high-quality frames with clearer structures.



(b) HR patch (c) Bicubic (d) IKC [2] (e) KGAN[1]+ZSSR[10]

(a) Ground truth HR frame (f) TOFlow [16] (g) RBPN [3] (h) Deblur[9]+EDVR[15] (i) Ours

Figure 14. Video super-resolution result (×4) on the SPMCS dataset [13], where the blur kernels in the degradation process are unknown
Gaussian kernels. The proposed algorithm recovers high-quality frames with clearer structural details.

(b) HR patch (c) Bicubic (d) IKC [2] (e) KGAN[1]+ZSSR[10]

(a) Ground truth HR frame (f) TOFlow [16] (g) RBPN [3] (h) Deblur[9]+EDVR[15] (i) Ours

Figure 15. Video super-resolution result (×4) on the SPMCS dataset [13], where the blur kernels in the degradation process are unknown
Gaussian kernels. The proposed algorithm recovers high-quality frames with clearer structures.

(b) Bicubic (c) RCAN [18] (d) IKC [2] (e) KGAN[1]+ZSSR[10]

(a) LR frame (f) MZSR [11] (g) TOFlow [16] (h) RBPN [3] (i) Ours

Figure 16. Video super-resolution results (×4) on a real low-resolution video. The proposed algorithm generates the frame with clearer
characters.



(b) Bicubic (c) RCAN [18] (d) IKC [2] (e) KGAN[1]+ZSSR[10]

(a) LR frame (f) MZSR [11] (g) TOFlow [16] (h) RBPN [3] (i) Ours

Figure 17. Video super-resolution results (×4) on a real low-resolution video. The proposed algorithm generates the frame with clearer
characters.

(b) Bicubic (c) RCAN [18] (d) IKC [2] (e) KGAN[1]+ZSSR[10]

(a) LR frame (f) MZSR [11] (g) TOFlow [16] (h) RBPN [3] (i) Ours

Figure 18. Video super-resolution results (×4) on a real low-resolution video. The proposed algorithm generates much clearer frames with
images with finer detailed structures.

(b) Bicubic (c) SPMC [13] (d) IKC [2] (e) KGAN[1]+ZSSR[10]

(a) Input (f) DUF [5] (g) TOF [16] (h) RBPN [3] (i) Ours
Figure 19. Results (×4) on a real low-resolution video. The proposed algorithm generates much clearer frames with finer structural details.
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