
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#6732

ICCV
#6732

ICCV 2021 Submission #6732. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

PT-CapsNet: A Novel Prediction-Tuning Capsule Network Suitable for Deeper
Architectures

Anonymous ICCV submission

Paper ID 6732

1. Architecture Details for PT-Capsule Layers
The architectures of the proposed PT-FC-Caps and PT-

LC-Caps are shown in Fig. 1 and Fig. 2, respectively, due to
the limited space in our paper.

2. Implementation Details
2.1. Image Classification Task

For the capsule network, both the number of capsule
types and the capsule dimension need to be considered.
The architecture details for PT-Caps-ResNet-110, PT-Caps-
WRN-28 and PT-Caps-DenseNet-100 are provided in Ta-
bles 1, 2 and 3, respectively. In each table, the first col-
umn indicates the blocks of each model, the second col-
umn shows the output feature map size of the correspond-
ing block, and the third column shows the argument de-
tails. More specifically, the third column contains (K1,K2)
(where K1 and K2 are the reception field size of the pre-
diction phase and the tuning phase in our PT-CapsNet), the
number of capsules, capsule dimension and the number of
times a PT-Capsule block is repeated.

layer size model
caps1 32× 32 (1, 3), 8, 4

caps2.x 32× 32

[
(1, 3), 8, 4
(1, 3), 8, 4

]
× 18

caps3.x 16× 16

[
(1, 3), 16, 4
(1, 3), 16, 4

]
× 18

caps4.x 8× 8

[
(1, 3), 16, 4
(1, 3), 16, 8

]
× 18

pooling 1× 1
PT-FC-Caps - n, 1

Table 1. Architecture of the PT-Caps-ResNet110 model used for
the classification task. n is the number of classes.

For PT-Caps-ResNet110, summarized in Table 1, there
are a total of 110 capsule layers in the model. The ba-
sic capsule block is composed of one K2 = 3 PT-LC-
Capsule layer, and the capsule bottleneck block is com-
posed of two stacked [K1 = 1,K2 = 3] PT-LC-Capsule

layer size model
caps1 32× 32 (1, 3), 16, 2

caps2.x 32× 32

[
(1, 3), 80, 2
(1, 3), 80, 4

]
× 4

caps3.x 16× 16

[
(1, 3), 80, 4
(1, 3), 80, 8

]
× 4

caps4.x 8× 8

[
(1, 3), 160, 8
(1, 3), 160, 8

]
× 4

pooling 1× 1
PT-FC-Caps - n, 1

Table 2. Architecture of the PT-Caps-WRN28 model used for the
classification task. The widening factor is applied on both capsule
channel and attribute channel. n is the number of classes.

layer size model m
caps1 32× 32 (1, 3), 12, 3 [12, 3]

caps2.x 32× 32

[
(1, 1), 24, 3
(1, 3), 6, 3

]
× 16 [108, 3]

TD 16× 16 (1, 1), 54, 3 [54, 3]

caps3.x 16× 16

[
(1, 1), 24, 3
(1, 3), 6, 3

]
× 16 [150, 3]

TD 8× 8 (1, 1), 75, 3 [75, 3]

caps4.x 8× 8

[
(1, 1), 24, 3
(1, 3), 6, 3

]
× 16 [171, 3]

pooling 1× 1 [171, 3]
PT-FC-Caps - n, 1 [n, 1]

Table 3. Architecture of the PT-Caps-DenseNet100 model used for
the classification task. This model is built from 100 capsule layers.
caps.x denotes the capsule bottleneck block, and TD represents the
capsule transition down block. Column m shows the number of
capsules and capsule dimension at the end of the block.

layers. Each capsule layer is followed by a batch normal-
ization (BN) layer and a ReLU activation layer. We have
one basic capsule block followed by three capsule bottle-
neck blocks in the model. For the four building blocks, (the
number of instance type, capsule dimension) is set to be
(8, 4), (8, 4), (16, 4), (16, 8). For the fully connected cap-
sule layer, we use a PT-FC-Capsule layer to directly output
(n, 1) capsules to make the final prediction, where n indi-
cates the number of classes.
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Figure 1. Architecture of the proposed PT-FC-Capsule layer.

Figure 2. Architecture of the proposed PT-LC-Capsule layer.

In PT-Caps-WRN28, summarized in Table 2, the net-
work depth is 28 capsule layers, and the widening fac-
tors for both capsule axis and attribute axis are set as
(5, 2), (1, 2), (2, 1) for the three capsule blocks. Each cap-
sule block has two stacked [K1 = 1,K2 = 3] PT-LC-
Capsule layers, and each capsule layer is followed by one
BN layer and one ReLU activation layer. The number of
output capsules and capsule dimension in the first capsule
layer and the following three building blocks are set to
(16, 2), (80, 4), (80, 8), (160, 8).

The PT-Caps-DenseNet100 model summarized in Ta-

ble 3, there are 100 capsule layers. The growth rate and
compression rate of each layer are set to be 6 and 0.5,
respectively. Capsule-based dense block is composed of
one [K1 = 1,K2 = 1] PT-LC-Capsule layer and one
[K1 = 1,K2 = 3] PT-LC-Capsule layer. Each capsule
layer is followed by a BN layer and a ReLU activation layer.
Transition down block is composed of a BN layer, followed
by ReLU, a [K1 = 1,K2 = 1] PT-LC-Capsule layer, and a
pooling layer to down-sample the feature maps.

Data augmentation was applied for training all the mod-
els. The datasets were augmented by performing 4-pixel

2
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zero padding on each side and a horizontal flip with proba-
bility of 0.5. Then, 32× 32 and 28× 28 patches were ran-
domly cropped from the images of the CIFAR and Fashion-
MNIST datasets, respectively. The initial learning rate (lr)
is set to 0.1, and its decay rate for ResNet-type, WRN-type,
and DenseNet-type models is set to 0.1, 0.2 and 0.1, re-
spectively. These models were trained for 160 (lr decay at
80th and 120th epochs), 200 (lr decay at 60th, 120th, and
160th epochs) and 300 (lr decay at 150th, and 225th epochs)
epochs, respectively. The weight decay and momentum are
set as 0.0001 and 0.9, respectively. SGD optimizer is used
with a batch size of 128 images for the ResNet-type and
WRN-type models, and 64 images for the DenseNet-type
model.

2.2. Semantic Segmentation Task

For semantic segmentation, we have used the ISIC2018
dataset [2][6], which is a binary semantic dataset for
melanoma detection for skin lesion analysis. The released
data consists of 2594 images with ground truth. We split
the dataset into training and testing set by a ratio of 7:3. We
adopt the mean Intersection over Union (mIoU) as the eval-
uation metric. All the models are trained for 100 epochs.
The initial learning rate is 0.01 with 10% decay every 50
epochs. We resize the input images to 513 × 513, and nor-
malize them into 1 channel. For data augmentation, we per-
form 4-pixel zero padding at all sides, and do horizontal flip
with a probability of 0.5. Then, we randomly crop 513×513
patches from the transformed image. We use Adam opti-
mizer and a batch size of 2 images per batch.

Fig. 3 shows the network structure of PT-Caps-
DeepLabv3+. The input image in R513×513×3 is first sent
to a backbone model to extract initial features. We adopt
ResNet-101 pretrained on ImageNet as the backbone, and
extract the low level and high level features from the out-
puts of first building block and fourth building block, re-
spectively. The high level features are sent to ASPP block,
which is composed of four parallel capsule blocks, with dif-
ferent dilation rates, and one pooling layer, to concatenate
features from various sizes of vision field. The concate-
nated features are then sent to another capsule block and
got concatenated with the low level features at the decoder
part. The decoder is composed of one convolutional layer
for processing low level features, one up sample layer for
processing features from ASPP, and three sequential cap-
sule blocks for processing the concatenated features. Fi-
nally, the processed features are up sampled to the same size
as the input image to perform pixel-level classification for
semantic segmentation. Each capsule block is composed of
one capsule layer followed by a BN layer and a ReLU layer.
The kernel size, number of capsules, and capsule dimension
of each capsule layer are indicated in Fig. 3.

2.3. Object Detection Task

For the object detection task on PASCAL VOC
dataset [3], the training set was built by merging the training
and validation sets of the VOC2007 and VOC2012 datasets.
The test set is the released test set of the VOC2007 dataset.
The models are trained for 300 epochs. A weight decay of
0.0005, and a momentum of 0.937 are used. The input im-
age size is fixed to 640× 640. SGD optimizer is used with
a batch size of 10.

The details of the PT-Caps-Yolov5 architecture, de-
signed for object detection, are provided in Table 4. The
first column shows the ID of the module. The second col-
umn (named from) indicates where the input feature maps
are from. More specifically, −1 indicates that the input fea-
ture maps are from the output of the previous layer, and [-1,
a] means that one input is from the previous layer and the
other input is from layer #a. n (third column) indicates how
many times a module is repeated. The fourth column is the
module name, and fifth column contains the argument de-
tails of each module. Argument format for Focus, Caps,
BottleneckCSP, and SPP modules is [input capsules, input
capsule dimension, output capsules, output capsule dimen-
sion, K2, stride]. We set K1 = 1 for all PT-capsule lay-
ers. Argument format for Upsample module is [multiplier
for spatial size, upsampling algorithm]. Argument format
for Concat module means the concatenation is performed
along the capsule axis. The arguments for the Detect layer
are presented across three lines in the table. The first line
represents the number of classes. The second line indicates
the size of anchors for each source of feature maps, and the
third line represents the corresponding number of input cap-
sules and input capsule dimension of each source of feature
maps.

3. Example Output Images

For qualitative comparison, example outputs from
ISIC2018 and VOC2007 datasets are provided in Figures 4
and 5 for semantic segmentation and object detection tasks,
respectively.

In Fig. 4, columns from left to right show the original
RGB image, the ground truth segmentation, the output of
DeepLabv3+ [1], and the output of our proposed PT-Caps-
DeepLabv3+ model, respectively. These images support the
results we present in Table 6 of our manuscript. Our pro-
posed method provides improved segmentation, and boosts
the mIoU of the DeepLab baseline model.

First and second columns of Fig. 5 show the detec-
tion outputs of YOLOv5[7, 4], and our proposed PT-Caps-
YOLOv5 model, respectively. As can be seen from rows
1, 2, 3 and 5, incorporating the PT-Capsnet improves the
detection performance of YOLOv5. For instance, in rows 1
and 2, our proposed approach can detect the chairs, in row 3
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Figure 3. Architecture details of PT-Caps-DeepLabv3+.

# from n module arguments
0 -1 1 Focus [1, 3, 16, 8, 3]
1 -1 1 Caps [16, 8, 32, 8, 3, 2]
2 -1 1 BottleneckCSP [32, 8, 32, 8, 1]
3 -1 1 Caps [32, 8, 64, 8, 3, 2]
4 -1 3 BottleneckCSP [64, 8, 64, 8, 3]
5 -1 1 Caps [64, 8, 64, 16, 3, 2]
6 -1 3 BottleneckCSP [64, 16, 64, 16, 3]
7 -1 1 Caps [64, 16, 128, 16, 3, 2]
8 -1 1 SPP [128, 16, 128, 16, [5, 9, 13]]
9 -1 1 BottleneckCSP [128, 16, 128, 16, 1]
10 -1 1 Caps [128, 16, 64, 16, 1, 1]
11 -1 1 Upsample [(1, 2, 2), ‘nearest’]
12 [-1, 6] 1 Concat [1]
13 -1 1 BottleneckCSP [128, 16, 64, 16, 1]
14 -1 1 Caps [64, 16, 64, 8, 1, 1]
15 -1 1 Upsample [(1, 2, 2), ‘nearest’]
16 [-1, 4] 1 Concat [1]
17 -1 1 BottleneckCSP [128, 8, 64, 8, 1]
18 -1 1 Caps [64, 8, 64, 8, 3, 2]
19 [-1, 14] 1 Concat [1]
20 -1 1 BottleneckCSP [128, 8, 64, 16, 1]
21 -1 1 Caps [64, 16, 64, 16, 3, 2]
22 [-1, 10] 1 Concat [1]
23 -1 1 BottleneckCSP [128, 16, 128, 16, 1]

24 [17, 20, 23] 1 Detect
20

[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]
[64, 8], [64, 16], [128,16]]

Table 4. Architecture of PT-Caps-YOLOv5 model to be used for object detection.
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it can detect the train and in row 5 it can detect both people,
while the baseline cannot. Moreover, for the objects, which
are correctly detected by both models (rows 1, 2, 4 and 5),
the detection score with our proposed model is higher.

4. Proof of Dynamic Routing Limitation
In our paper, between lines 227–232, it is stated that

“Also, the typical dynamic routing algorithm can be easily
influenced by the vectors with longer lengths regardless of
whether their predictions are reliable or not.” We elaborate
on and prove this statement below.

In the following, we will use the same notation as
[5], wherein the details of the dynamic routing are well-
explained. The dynamic routing is used to determine the
weights bij of the intermediate votes ûj|i outputted from
the transformation phase. The normalized weights cij are
obtained by applying softmax to bij along the j axis, and
are called the coupling coefficients between the capsules in
layer l and the capsules in layer l + 1. Given ûj|i (the vec-
tors produced by the first part-whole transformation phase),
the dynamic routing initially distributes equal weights to all
of the intermediate votes. Then, the averaged vectors sj are
calculated by the weighted sum of ûj|i along the i axis, and
the squash function is applied to normalize sj , and gen-
erate the high-level capsules vj . The dot products of vj and
votes ûj|i are added to bij to further adjust the weights for
intermediate votes. These steps are iterated for several runs
to get the final predicted high-level capsules vj .

Let us assume that there are M -many high-level capsules
and each of them has N -many intermediate votes. Let Wj

represent the set of intermediate votes that are not reliable
(far from truth) for jth high-level capsule, and Rj represent
the set of reliable intermediate votes (closer to truth) for jth

high-level capsule. Then, we have the following:

ûwj
=

∑
ûj|i∈Wj

ûj|i, ûrj =
∑

ûj|i∈Rj

ûj|i, (1)

where ûwj denotes the sum of votes in set Wj , and ûrj

denotes the sum of votes in set Rj . Now, let us consider the
case, where the length of ûwj

is longer than the length of
ûrj , i.e,: ∣∣ûwj

∣∣ > ∣∣ûrj

∣∣ . (2)

In the first run of dynamic routing, all the votes are given
equal weights, so the prediction can be written as:

s1j =
ûwj

+ ûrj

M
, v1j = Squash(s1j ), (3)

where s1j and v1j are the prediction and the normalized pre-
diction, respectively, for the jth high-level capsule in first
run. Due to Eq. (2), the vector s1j is closer to ûwj than ûrj ,
and the same is true for v1j . Thus,

cos(v1j , ûwj
) > cos(v1j , ûrj ), (4)

and
v1j · ûwj

> v1j · ûrj . (5)

RGB Ground Truth DeepLabv3+ Ours

Figure 4. Example segmentation results from ISIC2018 dataset.
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The weights updated after the first run can be written as:

b1wj
= b0wj

+ v1j · ûwj , b1rj = b0rj + v1j · ûrj , (6)

YOLOv5 Ours

Figure 5. Example object detection results from VOC2007 dataset.

where b0wj
= b0rj are the initial weights with the same value.

Thus, based on Eq. (5), we can have:

b1wj
> b1rj , (7)

resulting in the weights of unreliable votes being larger than
the weights of reliable votes after the first run. After several
such iterations, this phenomenon will be exacerbated.

This can be further illustrated with a simple example.
Assume that there are three capsule vectors in layer l and
two 2D capsule vectors in layer l + 1. Also assume that
six middle capsule vectors are û1|1 = (1, 2), û2|1 = (2, 2),
û1|2 = (1, 2), û2|2 = (2, 2), û1|3 = (−8,−6), û2|3 =
(−7,−7); and the wrong predictions are from û1|3 and
û2|3. The weights after three iterations can be calculated as:
c11 = 0.8548, c12 = 0.1452, c21 = 0.8548, c22 = 0.1452,
c31 = 0.7714, c32 = 0.2286; and the predictions for cap-
sules in layer l + 1 are: v1 = (−0.9220,−0.2499) and
v2 = (−0.4774,−0.4774) with existence probabilities of
0.9553 and 0.6752, respectively. We can see that the final
predicted direction and probability are closer to the wrong
predictions.
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