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1. Additional Experiments
Here we provide additional experiments that highlight

the success and failure cases of the different self-supervised
learning (SSL) algorithms and our positive image selection
mechanisms we evaluated in the main paper.

1.1. Are modern SSL algorithms effective on cam-
era trap data?

From Figure 5 in the main paper we can see that self-
supervised methods are superior to ImageNet derived fea-
tures, in the vast majority of cases. In addition, context-
based approaches for positive image sampling further in-
crease the performance. In Figure 2, we can see that while
SimCLR is typically the best performing method, there are
multiple instances where more naive SSL methods outper-
form it. Using context-based sampling increases overall ac-
curacy (bottom vs. top row), making the simpler baselines
competitive with conventional SimCLR.

1.2. Do we need ground truth bounding boxes for
SSL to be effective for camera trap data?

In the main paper, we performed all experiments using
ground truth bounding boxes. This was to avoid drawing
conclusions based on any biases that may be present in a
specific detector e.g. some of the datasets we use are public
and thus could have been part of the training set for a pub-
lic detector. To evaluate how effective detected boxes are,
we replaced ground truth detections with automatically de-
rived ones from MegaDetector (MD) [1] and retrained our
SSL models from scratch on the MMCT dataset. We used
MMCT because we can guarantee that MegaDetector is not
trained on it. To ensure a fair comparison with the results in
the main paper, when performing linear evaluation (but not
when performing SSL), we used the ground truth boxes for
the test set and supervised training set during evaluation.
We can see from the results in Table 2 that the quality of
representations from detected boxes are comparable to the
ones learned from ground truth (GT) boxes.

Next, we increased the number of detected boxes by a
factor of two by adding more images to the training set i.e.
from the same camera locations, but at different points in

time (denoted as MDx2 v1). This resulted in about 25,406
total cropped images, as opposed to the 13,549 derived from
manual annotations. MegaDetector needs no changes or
special training to do this. We see that the performance
increases compared to using fewer detections. Finally, we
tried an alternative version of the above experiment where
we added detections from the held out locations in the test
set (denoted as MDx2 v2), for the same total of 25,406
cropped images. Again we see an additional improvement
but without increasing further the number of images, in-
dicating that the downstream task performance can bene-
fit from pretext training with images from similar locations
with the test set.

We conclude that the SSL methods evaluated are robust
to how the training cropped images are generated and re-
sult in performance that is comparable to using manually
annotated boxes. An obvious question is what would the
performance be like if you only used entire images and not
ones cropped around the objects of interest. Existing work
has shown that cropped images are much more effective
in the case of image classification from camera traps [2].
Given this and the availability of highly accurate detectors,
we chose not to address this question.

1.3. What is the impact of increasing model capac-
ity?

All experiments in the main paper were conducted us-
ing a ResNet18 [5] as the backbone feature extractor with
an image resolution of 112 × 112 pixels. As we use im-
ages cropped around the objects of interest as input, this
resolution is more than sufficient for capturing the visually
important characteristics of the categories.

In Table 3 we show the impact of increasing both the
backbone model capacity (i.e. using a ResNet50) and the
image resolution (i.e. using an image side of size 224). As
expected, we see performance improvements across all con-
ditions, but importantly the ranking of the methods is rel-
atively stable. We conclude that for best possible perfor-
mance, not surprisingly one should use large models and
higher resolution. However, this comes at the expense of
increased training times and memory consumption.
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1.4. What is the impact of initializing end-to-end
supervised training with weights learned from
self-supervision?

The results in Figure 5 of the main paper were computed
with the linear evaluation scheme that is commonly used
in SSL i.e. by training a linear model using self-supervised
features as input. Here, we use the SSL models as an ini-
tialization and fine-tune all the weights of the backbone net-
work to understand if the improvements reported in the lin-
ear evaluation case follow through to the end-to-end one.
The most realistic setting for camera-trap data is the low la-
bel regime where only a small number of images have been
annotated. With this in mind, we only present results for
the 1% and 10% labeled images settings. When perform-
ing supervised training, all hyper parameters are the same
as the ones we use for SSL with the exception of the learn-
ing rate which we decrease to 0.003. In Table 4 we observe
that in almost all cases, models that are initialized with SSL
derived weights are vastly superior to those that use only
ImageNet initialization (denoted as Standard). Again, we
see that the models trained with context result in a much
better initialization than without.

1.5. What happens if we start SSL from random
weight initialization?

All the results in the main paper use models that have
been pretrained on ImageNet. While it is more common in
SSL to start from randomly initialized weights, we instead
adopted the more pragmatic viewpoint that pretrained net-
works are readily available, and thus practitioners are likely
to use them as a starting point. In the interest of making
progress on camera trap image classification (where lack
of image labels is the main issue), we chose to start from
ImageNet pretrained models. Not surprisingly, if we ini-
tialize our SSL models with random weights, the perfor-
mance is worse on the medium-sized datasets that we use
for our experiments (see Table 5). Importantly, we still ob-
serve that utilizing context information is superior to stan-
dard augmentation-based SSL.

1.6. Are accuracy gains concentrated with the
majority-categories, or spread across multi-
ple categories?

In Figure 1 we compare the per-category, 10% linear
evaluation, accuracy of standard SimCLR and SimCLR
with our context-based positive based sampling. For each
category, we also include the number of examples in the
10% subset of the training data. There is no dominant pat-
tern, and we see that context-based sampling helps for both
well-represented and under-represented categories.

1.7. What is the proposed algorithm getting right,
that “Standard” SSL is getting wrong?

In order to attempt to address this question, we imple-
mented a simple nearest neighbor retrieval visualization. A
given query image is used to retrieve the five nearest neigh-
bors in embedding space. In Figure 3 we show example re-
sults on CCT20. We can see that the standard augmentation-
based SimCLR model leads to retrieved images that look
qualitatively like the query in that they have similar light-
ing and orientation (e.g. portrait vs. landscape). But they
sometimes contain the wrong animal species, compared to
ours (with ‘Context’), which seems to capture more diverse
appearances and better emphasize species-related character-
istics. We observe similar trends for MMCT in Figure 4.

The top-left example in Figure 3 and the top two exam-
ples in Figure 4 illustrate a limitation of both of the self-
supervised methods. We can see that the oracle is capable
of retrieving images with large illumination changes (i.e.
spanning night and day). In these examples, it appears that
the self-supervised methods are not able to merge these dis-
tinct visual modes. This is despite the large amount of color
augmenting that they are exposed to during training e.g.
color jittering and grayscale conversion. An interesting fu-
ture question, is what additional information can we make
use of during training to merge these diverse modes within
a given category.

1.8. Is the proposed approach applicable beyond
camera trap data?

While we believe that the four quite distinct camera trap
datasets explored in the paper constitute an important prob-
lem that deserves dedicated attention, we explore the ap-
plicability of our approach on the Functional Map of the
World (FMoW) [4] to test the generalizability of the find-
ings. FMoW is a satellite imagery dataset that contains an-
notated images of categories relevant to the functional pur-
pose of buildings or land use. The data comes in tempo-
ral sequences and is accompanied by metadata which make
them suitable for validating our approach. We used a subset
of the data that consists of 30 different classes, with 30,014
images reserved for training and 10,085 for testing. The re-
sults in Table 1, show that: (i) SSL is superior to ImageNet
features and (ii) our context selection is consistently better
than standard SSL, especially in the low-data regime.

2. Implementation Details
Here we provide additional implementation details re-

lated to our experimental evaluation.

2.1. Training

Unless otherwise stated, each SSL network uses a back-
bone initialized with ImageNet weights. We train all models



for 200 epochs with a batch size of 256 and a learning rate
of 0.03, using a cosine annealing schedule. We use SGD
with momentum of 0.9 and weight decay of 0.0005. The
projector g is a two layer MLP with a hidden layer of size
512 and size 128 for the output. The predictor h, used by
SimSiam, is also a two layer MLP with a hidden layer of
size 64. For SimSiam only, as in the original paper [3], we
add batch normalization to the output of the first layer for
the projector and predictor – the model performed poorly
without it. For the larger capacity models, we reduced the
batch size by half and scaled the learning rate by half also.

For the triplet loss in Equation 1 we set the margin to 0.3.
To scale the distances used by SimCLR, we use a tempera-
ture of 0.5, see Equation 2 in the main paper. The context
temperature parameter in Equation 5 is set to 0.05.

For the sequence positive approach in Section 3.2, we
consider all images that are from the same location that are
captured within 5 seconds of each other as potential posi-
tives.

We use the same set of augmentations for all SSL and
end-to-end supervised methods at training time. This in-
cludes random resized crops in the range [0.2, 1.0], horizon-
tal flipping with probability 0.5, color jittering with proba-
bility 0.8, and grayscale conversion with probability 0.2.

2.2. Evaluation

When training the linear classifiers for evaluation we use
logistic regression with L2 regularization as implemented
in scikit-learn 1. We use a lbfgs solver, with a maxi-
mum number of iterations of 1000 and a multinomial loss.
To select the regularization weighting, we search over the
set {0.001, 0.01, 0.1, 1, 10, 100}, and choose the best value
using five-fold cross validation on the training set. When
training the linear classifier, we simply resize the cropped
image to the desired image resolution (e.g. 112×112) when
extracting features, and we do not use any other augmenta-
tion.

When generating the 1% and 10% subsets, we randomly
sampled the corresponding percentage of images of each
class in the full training set, while also ensuring that there
were at least one example per class. Some categories are
more common than others, so this sub-sampling proce-
dure preserves the imbalance that is typical in camera trap
datasets. We use the same fixed subsets for all experiments
for a given dataset.
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Con. Pos. 45.93 52.24 53.03

SimSiam Standard 46.58 51.74 55.76
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Figure 1. Evaluating per-class accuracy. Here we report test-time, per-class, linear evaluation accuracy for each of our four different
datasets. We compare standard image augmentation to our context-based approach using SimCLR as the SSL algorithm.
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Figure 2. Linear evaluation accuracy of different SSL approaches and positive pair selection strategies. This is an alternative presentation
of the results from Figure 5 from the main paper where it is easier to compare the different SSL methods on a given dataset.



Maasai Mara Camera Traps (MMCT)
1% 10%

Approach Method GT MD MDx2 v1 MDx2 v2 GT MD MDx2 v1 MDx2 v2
Triplet Standard 51.99 52.93 55.35 55.76 65.86 64.85 68.47 68.43

Seq. Pos. 61.06 60.63 61.63 62.82 72.09 70.79 72.27 73.25
Con. Pos. 61.10 60.79 61.51 63.52 71.88 70.88 72.66 73.27

SimCLR Standard 54.93 56.30 59.46 60.32 69.83 68.95 72.67 73.46
Seq. Pos. 63.00 62.55 64.11 64.57 73.84 72.21 74.37 74.37
Con. Pos. 64.01 63.84 63.98 67.29 73.93 72.77 74.03 76.01

SimSiam Standard 48.78 47.87 56.75 57.17 63.53 62.98 68.33 68.11
Seq. Pos. 62.96 61.18 63.08 66.90 71.28 70.46 72.29 74.73
Con. Pos. 61.66 62.78 64.83 66.59 71.23 70.78 72.40 74.01

Table 2. Comparing detected bounding boxes from MegaDetector (MD) with ground truth (GT) boxes on the MMCT dataset. We also
evaluate the effect of doubling the camera trap detections from locations that are not in the test set (MDx2 v1) and locations that belong to
the test set (MDx2 v2).

Caltech Camera Traps (CCT20)
1% 10% 100%

Approach Method RN18-112 RN50-224 RN18-112 RN50-224 RN18-112 RN50-224
Triplet Standard 59.13 61.99 68.43 73.85 73.40 80.10

Seq. Pos. 66.30 70.80 74.96 80.96 77.31 83.67
Con. Pos. 65.90 70.87 74.51 81.22 76.42 83.11

SimCLR Standard 65.75 68.59 75.36 78.98 76.37 83.39
Seq. Pos. 67.60 74.96 78.22 82.74 78.99 85.54
Con. Pos. 68.67 75.06 77.60 82.78 78.02 85.14

SimSiam Standard 56.64 57.47 66.08 72.42 72.13 78.61
Seq. Pos. 61.74 66.16 71.34 78.39 74.78 81.52
Con. Pos. 59.93 69.95 69.98 79.14 74.38 82.59

Table 3. Evaluating model capacity. Linear evaluation accuracy on CCT20 with increased model capacity from ResNet18 (RN18) to
ResNet50 (RN50) and image resolution from (112× 112) to (224× 224). We compare the positive-pair mining methods across all SSL
approaches.

1% 10%
Dataset Approach Method Lin. Eval. End-to-End Lin. Eval End-to-End
CCT20 Supervised - - 55.65 - 75.14

SimCLR Standard 65.75 68.76 75.36 78.20
SimCLR Seq. Pos. 67.60 72.56 78.21 79.33
SimCLR Con. Pos. 68.67 72.06 77.61 78.73

MMCT Supervised - - 53.00 - 67.73
SimCLR Standard 54.93 59.30 69.82 73.97
SimCLR Seq. Pos. 63.00 62.91 73.84 74.22
SimCLR Con. Pos. 64.00 62.23 73.93 75.89

ICCT Supervised - - 62.50 - 76.60
SimCLR Standard 75.38 75.14 77.24 79.44
SimCLR Seq. Pos. 76.26 76.02 76.56 77.38
SimCLR Con. Pos. 76.58 77.13 78.10 79.12

Serengeti Supervised - - 36.03 - 55.29
SimCLR Standard 40.37 41.30 50.64 54.17
SimCLR Seq. Pos. 43.97 43.79 53.48 54.58
SimCLR Con. Pos. 41.53 42.62 51.10 54.19

Table 4. Comparing linear versus end-to-end supervised finetuning. Starting from SimCLR derived self-supervised representations, we
compare linear evaluation (as in the main paper) to end-to-end supervised finetuning from SSL initialization. ‘Supervised’ refers to the
performance of the fully-supervised baseline, initialized from ImageNet only, without using SSL.



Caltech Camera Traps (CCT20)
1% 10% 100%

Approach Method ImageNet Random ImageNet Random ImageNet Random
Triplet Standard 59.13 45.22 68.43 51.04 73.40 56.14

Seq. Pos. 66.30 46.53 74.96 55.24 77.31 59.35
Con. Pos. 65.90 46.90 74.51 54.65 76.42 59.19

SimCLR Standard 65.75 53.29 75.36 62.90 76.37 66.89
Seq. Pos. 67.60 58.09 78.22 67.40 78.99 70.84
Con. Pos. 68.67 58.86 77.60 67.36 78.02 69.41

SimSiam Standard 56.64 41.36 66.08 48.77 72.13 53.45
Seq. Pos. 61.74 43.04 71.34 50.70 74.78 54.92
Con. Pos. 59.93 43.82 69.98 51.35 74.38 56.27

Table 5. Comparing random initialization to ImageNet initialization. Linear evaluation comparison of SSL approaches on CCT20 with the
backbone feature extractor f initialized with weights either from ImageNet (as in the main paper) or randomly.
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Figure 3. Nearest neighbor retrieval results for SimCLR for four different test images from CCT20. For each of the different images,
we show the top five nearest neighbors in 128 dimensional embedding space (i.e. the output of the projector) for three different SimCLR
models. The label on top of each image is the ground truth class name. We see that the nearest neighbors for ‘Standard’ SimCLR display
very limited visual diversity. The unobtainable ‘Oracle’ model, which has been trained with ground truth labels, has the most variety. Our
‘Context’ approach is between the two extremes and shows non-trivial diversity which indicates that it contains more semantic information
in it’s features compared to conventional augmentation-based SimCLR. Note, that none of these images have been observed during self-
supervised training.
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Figure 4. Nearest neighbor retrieval results for SimCLR for four different test images from MMCT. For each of the different images,
we show the top five nearest neighbors in 128 dimensional embedding space (i.e. the output of the projector) for three different SimCLR
models. The label on top of each image is the ground truth class name. Again, our ‘Context’ approach captures more diverse appearances
and perspectives of animals compared to conventional augmentation-based SimCLR. Note, that none of these images have been observed
during self-supervised training.


