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1. Second derivative
We start from our cross entropy loss function L, which

we divide in two loss terms

L = LF +LF

=
∑
F

log p+
∑
F

log(1− p) (1)

As a reminder, for convenience we set p = p(y = 1|x)
and 1− p = p(y = 1|x) given a binary classification prob-
lem. The LF corresponds to the loss on the foreground area
F for which we have manual annotations, and LF corre-
sponds to the loss on the rest area F . As we do not have the
true annotations for F , we cannot really compute the loss
LF , at least not accurately. As usual, we rely on stochastic
gradient descent for optimising the model parameters, that
is
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where we have approximated the discrete change in weights
over two subsequent time steps wt+1 − wt with the contin-
uous derivative dw

dt .
The derivative of the loss with respect to the weights is
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For binary classification, we use sigmoidal neurons in the
outputs, that is

p = p(y = 1|x) = σ(
∑
k

wkxk), (4)

where k is an index running over all the dimensions of
the input sample x ∈ I , to the sigmoidal output neuron. As
a reminder, the derivative of the sigmoid with respect to its
inputs is dσ(z)

dz = σ(z)(1 − σ(z)). Replacing equation (4)
to (3) and focusing on the derivative with respect to the j-th
weight, we have
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Next, we want to examine what is the dynamics of learn-
ing, as well as the speed of learning. We associate the dy-
namics of learning with dL

dt , in that the derivative with re-
spect to time indicates how the loss decreases with time and
the learning improves with time. Then, the speed of learn-
ing is associated with the second derivative d2 L

dt2 . As a side
note, the more frequently appearing derivative with respect
to weights, dLdw , indicates the optimal direction for learning
but not the dynamics of learning. Since we are more inter-
ested in the unannotated area F , we will focus only on the
respective terms. The same derivations can be made for the
other terms also.
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Using equation (2) the first derivative with respect to
time is

dLF
dt

=
∑
k

dLF
dwk

dwk
dt

=
∑
k

dLF
dwk

(−ε
dLF
dwk

)

= −ε
∑
k

(dLF
dwk

)2
(6)

Using equations (6) and the term in (5) that corresponds
to F , and dropping the

∑
F for notation clarity (the total re-

sult is the sum over all samples in F), the second derivative
is then
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We know that
dwr
dt

= −ε
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dwr

= −ε(−xrp) = εxrp

(8)

By combining equations (7) and (8), we obtain that
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where m and n, m > n, indicate integers powers forming a
polynomial equation for output probabilities p and 1− p as
roots.

In figure 1, we show that unlike standard cross entropy
for exclusive cross entropy the d2 LF

dt2 is close to zero, ef-
fectively reducing the speed of learning for the background
and delaying biased gradients.

2. Dataset information
In table 1 an overview of all datasets can be observed.

All datasets except the TIL localisation dataset are orig-
inally exhaustively annotated. All datasets except WBC-
NuClick contain areas from H&E stained slides and from
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Figure 1: Second order derivative graphs for the cross-
entropy and the exclusive cross-entropy losses, split per Ob-
ject “Obj” and Background loss components on the 60%
non-exhaustive set of the TNBC dataset

various cancer types. The WBC-NuClick dataset, contains
white blood cells in blood sample images synthetically gen-
erated for cell segmentation [2]. In addition, there exists
data overlap between dataset Kumar and MoNuSeg, due to
the fact that Kumar was later enhanced with additional data
and has functioned into a benchmark challenge dataset on-
line1.

For the TNBC dataset, the split decision for training, val-
idation and testing sets was done on a slide level, avoiding
mixing images of the same slide in different sets. For our
TIL localisation dataset, a similar decision was made on
a patient level to avert overlap between testing and train-
ing sets. For datasets CoNSep, CPM15, CPM17, Kumar,
WBC-NuClick, the testing and training splits were avail-
able, but not the validation. In this case, 30% of the train-
ing set was used as an independent validation set. Datasets
CRCHisto, TNBC contained no split information and a 60-
20-20 split was performed for the training, validation and
testing sets respectively. For the MoNuSeg dataset, all split
sets were provided.

Pre-processing For datasets TNBC and WBC-NuClick
because there is only foreground level information, cells are
indistinguishable from each other in the mask, a watershed
method is applied to segment the datasets into separate cells
[1]. For every image, we calculate local maximum points
for the foreground areas. We define a specific cell size for
each dataset: a circle with 25 and 70 pixels in diameter for

1https://monuseg.grand-challenge.org/Data/

https://monuseg.grand-challenge.org/Data/


Table 1: Summary information of datasets.

CoNSeP CPM15 CPM17 CRCHisto Kumar MoNuSeg WBC-N. TNBC TIL

Number of images 41 15 74 100 30 44 1’463 50 440’734
Size of images 103x103 Varying Varying 500x500 103x103 103x103 512x512 512x512 256x256
Number of cells 24’332 2’905 7’570 29’748 16’954 23’610 10’821 4’053 45’127
Exhaustive Yes Yes Yes Yes Yes Yes Yes Yes No

TNBC and WBC-NuClick respectively. Using this infor-
mation, cell centroids are selected from the distinct local
maxima separated by at least the dataset-specific diameter.
We then apply watershed with origin points being the cell
centroids to acquire cell shapes and boundaries.

Bounding box labels for all datasets were created by
calculating the width, height and centre position of each
cell. No other pre-processing steps were taken that affected
the raw image signal. Datasets CoNSeP, CPM15, CPM17,
CRCHisto, Kumar, and MoNuSeg, do not have constant im-
age size dimensions of power of 2, e.g. 28 = 256. This
situation is prone to practical errors during training differ-
ent sized images using one model. To mediate this effect,
a random crop operation is applied to reduce the image di-
menions to the nearest power of 2 number. For example, an
image of size 1′000×1′000 is cropped at a random location
to form an input sample of 512× 512.

Data augmentation Only for the training sets, for each
sample we randomly apply the following augmentations:
(1) image blurring (2) Gaussian additive noise (3) rotations
around 90 degrees (4) left-right, up-down flips, and (5) diag-
onal flips. For the image blurring, we use a Gaussian kernel
of randomly selected size chosen from the set {3, 5, 7}. For
the additive noise, we generate noise by sampling out of a
Gaussian distribution with zero mean and standard devia-
tion equal to 5. For the rotational augmentations we ran-
domly select an angle from the set {90, 180, 270}. All 5
augmentation variants are randomly applied with a proba-
bility of 0.5 per sample.

In addition, for the datasets with H&E stained images
we apply a normalisation method, introduced in the work of
[7], which perturbs stain concentrations. As recommended
by the original work of [7], this step helps model staining
variability in histological images; such the ones which are
used in this work.

3. Experimental details
The Unet network was implemented as originally intro-

duced in the work of [6]. No changes were made to the
model architecture. The YOLLO network, as described
in the work of [8], comprises 7 convolutional layers with
batch normalisation and max pooling operations. In table 2

Table 2: Hyper-parameters used for training.

Parameter Value

Adam optimiser betas (0.9, 0.999)
Learning rate 10−4

Batch size 16
Epochs 300
Detection λBackground 10
Detection λObjects 1
Detection iou threshold 0.5
Non-maximum suppression threshold 0.2
ECE, background group annealing epoch 50
ECE, negative sampling annealing epoch 150
Gradient accumulation iterations 4

Figure 2: Qualitative results for losses CE (left), ECE
(right) on the TIL dataset. Blue squares indicate predictions
for lymphocytes.

the hyper-parameters used for training the two models are
listed. No change of parameters is made when using a dif-
ferent model or when changing datasets.

For the detection task the predicted bounding boxes were
further processes with a non-maximum suppression algo-
rithm, as described in the work of [5]. From the remaining
bounding boxes the interest-over-union (IOU) is calculated
for each available label box and if is above the IOU thresh-
old then the object is considered correctly detected.

It was observed, that in some datasets of the detection
task for the 90% and 100% sets, exclusive cross-entropy
did not attend top performance over the traditional cross-
entropy method by a couple of percentage points. For the



Table 3: Dice and Aggregated Jaccard Index (AJI) scores results for the segmentation task using the Early Learning Reg-
ularization (ELR) method. ELR asymmetric refers to the parameter configuration of the Early Learning Regularization
method using the training under their asymmetric setup in the original work. Similarly, for the CIFAR 10 and CIFAR 100
configurations.

Dataset Method
DICE AJI

30 60 100 30 60 100

TNBC

ELR asymmetric 0.55 0.75 0.82 0.35 0.41 0.71
ELR CIFAR 10 0.62 0.73 0.80 0.51 0.64 0.67
ELR CIFAR 100 0.63 0.74 0.79 0.57 0.61 0.66
Cross-entropy 0.43 0.61 0.84 0.24 0.43 0.73
Exclusive cross-entropy 0.80 0.83 0.82 0.58 0.73 0.74

CPM15

ELR asymmetric 0.24 0.66 0.81 0.16 0.58 0.65
ELR CIFAR 10 0.39 0.65 0.76 0.26 0.33 0.68
ELR CIFAR 100 0.59 0.67 0.76 0.32 0.44 0.56
Cross-entropy 0.47 0.61 0.80 0.25 0.52 0.69
Exclusive cross-entropy 0.79 0.82 0.81 0.55 0.64 0.69

CoNSeP

ELR asymmetric 0.53 0.62 0.76 0.43 0.45 0.52
ELR CIFAR 10 0.60 0.66 0.74 0.36 0.42 0.43
ELR CIFAR 100 0.66 0.67 0.69 0.42 0.67 0.48
Cross-entropy 0.47 0.61 0.80 0.33 0.45 0.67
Exclusive cross-entropy 0.78 0.80 0.79 0.58 0.70 0.69

sake of generality, exclusive cross-entropy was developed
using as reference the collective scores of the 30%, 60%
and 80% sets of the TNBC dataset. This was done to satisfy
high performance for the intended task of sparse-shot learn-
ing without having a costly trade-off. This resulted in the
drop of 1-3 percentage points at the fully exhaustive sets. In
table 4 we present results with the exclusive cross-entropy
by adjusting the weighing factor of the no-objects group in
the loss function [3]. The results show that it is possible to
optimise further the exclusive cross-entropy training for the
exhaustive cases specifically if required.

Table 4: F1-score results for the detection task training the
YOLLO model using the Exclusive cross-entropy loss with
a larger λnoobj value manually defined for exhaustive labels.

Dataset Method 90% 100%

CoNSeP

CE 0.50 0.51
ECE, current 0.48 0.48
ECE, exhaustive-specific 0.53 0.52

Kumar
CE 0.64 0.63
ECE, current 0.61 0.62
ECE, exhaustive-specific 0.66 0.68

Weakly supervised learning and early learning regular-
ization We compare our exclusive cross-entropy with the
related work of Early Learning Regularization (ELR) [4] in-
dicating a unique example for noisy label learning, using a
weakly supervised approach.

In table 3 the Dice and Aggregated Jaccard Index (AJI)
scores are shown comparing the methods. It is important
to note that the same pattern observed in the traditional
weakly supervised method is also shown in the results for
the early learning regularisation. In sparser sets, there ex-
ists too much noise for the noisy label learning to be able
to work, while the exclusive cross-entropy outperforms this
weakly supervised variant. In addition, early learning regu-
larisation adapts its parameters for three separate difficulty
levels, whilst for the exclusive cross-entropy all 161 ECE
experiments with YOLLO and Unet on nine datasets use
the same hyperparameters.

4. Qualitative results for TIL dataset

In 2, the difference between these two losses is seen
qualitatively. Because the exclusive recall Recexc(y) cannot
account for missed true positives, the quantitative results
on the TIL localisation dataset show only a small increase
in performance for the exclusive cross-entropy. However,
when inspecting the detections visually, it can be observed
that the exclusive cross-entropy makes more conservative
predictions, reducing the number of false positives signifi-



cantly; which cannot be reflected in any performance score
of non-exhaustively annotated dataset. This is consistent
with previous results on all other datasets where the exclu-
sive cross-entropy demonstrates a significant drop in false
positive counts, compared to cross-entropy.
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